Testing the Standard Model in rare decays of *B* mesons at the Belle experiment

Physic Seminar Centre CEA de Saclay

Presented by Simon Wehle

Deutsches Elektronen-Synchrotron

Table of Contents

2 Flavor Anomalies

3 Lepton Flavor Universality

Particle Physics Today

- The Standard Model leaves many questions
- Why do we have three generations of leptons and quarks?
- Hierarchy, masses, 22 free parameters

Credit: W. Altmannshofer, The Flavor Puzzle

Particle Physics Today

Credit: W. Altmannshofer, The Flavor Puzzle

- Can we find New Physics to understand the structure of the SM ?
- With flavor physics we soon might be a step closer..

Frontiers

High Energy

- Allows for the direct production of new particles
- Energy Scale ~ 10 TeV
- No indication for NP

Precision Physics

- New "virtual" particles can occur in quantum loops
- Can test a higher mass scale of ~ 100 TeV [A. Buras et al, JHEP1411(2014)121]
- There are many tensions in the flavor sector!

Frontiers

High Energy

- Allows for the direct production of new particles
- Energy Scale ~ 10 TeV
- No indication for NP

Precision Physics

- New "virtual" particles can occur in quantum loops
- Can test a higher mass scale of ~ 100 TeV [A. Buras et al, JHEP1411(2014)121]
- There are many tensions in the flavor sector!

Complementary Pathways to New Physics

Credit: J. Albrecht, DESY Seminar 16

Simon Wehle (Deutsches Elektronen-Synchrotron) < ロ ト < 団 ト < 臣 ト < 臣 ト 連 = のへへ

Complementary Pathways to New Physics

Credit: J. Albrecht, DESY Seminar 16

Past examples

- ► GIM Mechanism: *c* quark
- *B* oszillations $\rightarrow M_t > 50 \text{ GeV}$

Complementary Pathways to New Physics

Credit: J. Albrecht, DESY Seminar 16

Past examples

- ► GIM Mechanism: *c* quark
- ▶ *B* oszillations \rightarrow *M*_t > 50 GeV

b Quark Decays

b quark properties

- Third family, high mass
- must decay outside of third
- all decays CKM suppressed
- \blacktriangleright \rightarrow long live-time

b Quark Decays

b quark properties

- Third family, high mass
- must decay outside of third
- all decays CKM suppressed
- \blacktriangleright \rightarrow long live-time

Credit: J. Albrecht, DESY Seminar 16

b Quark Decays

b quark properties

- Third family, high mass
- must decay outside of third
- all decays CKM suppressed
- ▶ \rightarrow long live-time

 All forces of the Standard Model involved in *B* meson decays

Credit: J. Albrecht, DESY Seminar 16

Flavor Physics around the World

The Belle Experiment

- The Belle experiment is located at the KEKB accelerator in Tsukuba, Japan
- Data taking from 1999 to 2010
- It is designed as a "B factory"
- ► 772 million *B*B̄ meson pairs

6

$$e^+e^- o \Upsilon(4S) o Bar{B}$$

World record for integrated luminosity

$$\int Ldt = 1 \text{ ab}^{-1}$$

The Belle Detector

- > 3.5 σ enhanced $B
 ightarrow {\it D}^{(*)} au
 u$ rates
 - 3.3 σ suppressed branching ratio of $B_s \rightarrow \phi \mu^+ \mu^-$
 - $\sim 3\sigma~$ tension between inclusive and exclusive determination of $|V_{ub}|$
 - $\sim 3\sigma\,$ tension between inclusive and exclusive determination of $|V_{cb}|$
 - $> 3\sigma~$ anomalies in angular distributions of $B o K^* \ell \ell$
 - 2.6 σ lepton flavor non-universality in $B \to K^{(*)} \mu^+ \mu^-$ vs. $B \to K^{(*)} e^+ e^-$

- $> 3.5\sigma~$ enhanced $B
 ightarrow {\it D}^{(*)} au
 u$ rates
 - 3.3 σ suppressed branching ratio of $B_s \rightarrow \phi \mu^+ \mu^-$
 - $\sim 3\sigma\,$ tension between inclusive and exclusive determination of $|V_{ub}|$
 - $\sim 3\sigma\,$ tension between inclusive and exclusive determination of $|V_{cb}|$
 - $> 3\sigma$ anomalies in angular distributions of $B o K^* \ell \ell$
 - 2.6 σ lepton flavor non-universality in $B \to K^{(*)} \mu^+ \mu^-$ vs. $B \to K^{(*)} e^+ e^-$

- $> 3.5\sigma~$ enhanced $B
 ightarrow {\it D}^{(*)} au
 u$ rates
 - 3.3 σ suppressed branching ratio of $B_s \rightarrow \phi \mu^+ \mu^-$
 - $\sim 3\sigma~$ tension between inclusive and exclusive determination of $|V_{ub}|$
 - $\sim 3\sigma~$ tension between inclusive and exclusive determination of $|V_{cb}|$
 - $> 3\sigma~$ anomalies in angular distributions of $B o K^* \ell \ell$
 - 2.6 σ lepton flavor non-universality in $B \to \kappa^{(*)} \mu^+ \mu^-$ vs. $B \to \kappa^{(*)} e^+ e^-$

Same effective couplings (Wilson Coefficients $C_{7,9,10}$)

The Flavor Anomalies Overview - Branching Ratios

From Justine Serrano EPS2017

Flavor Changing Neutral Currents $b \rightarrow s \ell \ell$

- ▶ Branching ratios of O(1 × 10⁻⁶)
- ▶ In my thesis I analyzed $b \to s \ell \ell$ in the decay of $B \to K^{(*)} \ell^+ \ell^-$
- In all three lepton modes:
 - e,μ An angular analysis of $B^0 o K^*(892)^0 \ell^+ \ell^$
 - au Upper limit to $B^+ o K^+ au^+ au^-$

Angular Analysis of $B \to K^* \ell \ell$

The observables are depended on $q^2 = M^2_{\ell^+\ell^-}$

The differential decay rate for $B \to K^* \ell^+ \ell^-$ can be written as

$$\begin{split} \frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_L\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} = & \frac{9}{32\pi} \left[\frac{3}{4} (1-F_L) \sin^2\theta_K + F_L \cos^2\theta_K \right. \\ & + \frac{1}{4} (1-F_L) \sin^2\theta_K \cos 2\theta_L \\ & - F_L \cos^2\theta_K \cos 2\theta_L + S_3 \sin^2\theta_K \sin^2\theta_L \cos 2\phi \\ & + S_4 \sin 2\theta_K \sin 2\theta_L \cos \phi + S_5 \sin 2\theta_K \sin \theta_L \cos \phi \\ & + S_6 \sin^2\theta_K \cos \theta_L + S_7 \sin 2\theta_K \sin \theta_L \sin \phi \\ & + S_6 \sin^2\theta_K \sin 2\theta_L \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_L \sin 2\phi \right] . \end{split}$$
Simon Wehle (Deutsches Elektronen-Synchrotron)

Folding Procedure

$$\mathcal{P}'_4, S_4: egin{cases} \phi o -\phi & ext{for } \phi < 0 \ \phi o \pi - \phi & ext{for } heta_L > \pi/2 \ heta_L o \pi - heta_L & ext{for } heta_L > \pi/2 \end{cases}$$

$${\cal P}_5', S_5: \ egin{cases} \phi o -\phi & {
m for} \ \phi < 0 \ heta_L o \pi - heta_L & {
m for} \ heta_L > \pi/2, \end{cases}$$

With a transformation of the angles, the dimension is reduced to three free parameters

- Each transformation remains three observables S_j, F_L and S₃
- The observables

$$P_{i=4,5,6,8}' = rac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}},$$

are considered to be largely free from form-factor uncertainties (J. High Energy Phys. 05 (2013) 137).

Transverse polarization asymmetry

$$A_T^{(2)} = rac{2S_3}{(1-F_L)}$$

Introduced by LHCb in Phys. Rev. Lett. 111, 191801.

Reconstruction of $B \to K^* \ell^+ \ell^-$

- Reconstructing B⁰ and B⁺ modes
- Using muon and electron modes
- ▶ K^* is reconstructed in (K^+, π^-) , (K_S^0, π^+) and (K^+, π^0)

Electron ModesMuon Modes $B^0 \rightarrow K^*(892)^0 e^+ e^ B^0 \rightarrow K^*(892)^0 \mu^+ \mu^ B^+ \rightarrow K^*(892)^+ e^+ e^ B^+ \rightarrow K^*(892)^+ \mu^+ \mu^-$

Signal selection:

- Neural network (NN) classifier for all particles in the decay chain
- Final signal selection on four *B* meson NN
- NN cut optimization on 2D figure of merit separate for the lepton flavor

Cut Optimization

- Most stright forward strategy:
- \blacktriangleright Optimize a combined FOM for *ee* and $\mu\mu$ channels

•
$$FOM = N_s / \sqrt{(N_s + N_b)}$$

Simon Wehle (Deutsches Elektronen-Synchrotron)

Fit Procedure

- Signal: Transformed differential decay rate
- Background: Kernel Density Estimation
- independent 3D unbinned maximum likelihood fit for:
 - ▶ q² bin: (1, 6), (0.1, 4), (4, 8), (10.09, 12.9), (14.18, 19)
 - P'_4 and P'_5

- **1.** The data is split into bins of q^2
- 2. $M_{\rm bc}$ is fitted to determine the signal and background fractions
- 3. The data is split into a sideband and signal region
- 4. The shape of the background is determined and fixed in the sideband with smoothed histograms
- 5. The final fits are performed as 3D maximum likelihood fit in θ_L , θ_K and ϕ for $P_{4,5,6,8}$ each treated as an independent measurement

Efficiency/Acceptance is critical to understand(!)

- We compare the generated distribution with the reconstructed
- The difference is fitted with a spline-fit

Flavor Anomalies

$$\begin{split} t_{\text{eff}}^{\text{bin}}(\cos\theta_{\ell},\cos\theta_{K},\phi,q^{2}) &= t_{\text{eff}}^{\text{fit}}(\cos\theta_{\ell}) \otimes t_{\text{eff}}^{\text{fit}}(\cos\theta_{K}) \\ &\otimes t_{\text{eff}}^{\text{fit}}(\phi) \otimes t_{\text{eff}}^{\text{fit}}(q^{2}), \end{split}$$

Signal Extraction $B \rightarrow K^* \ell^+ \ell^-$

- ▶ Signal is extracted in Beam Constrained Mass: $M_{\rm bc} \equiv \sqrt{E_{\rm Beam}^2 |\vec{p}_B|^2}$
- Signal pdf: Crystal Ball shape, Background pdf: Argus shape

Result P'₅ - Result

Result P'₅ - Result

Result - Result for Combined Data

- Measurements are compatible with the SM
- Similar central values for the P'_5 anomaly with 2.5 σ tension

Complications - Doubts

► Although, overall uncertainty on b → sℓℓ form-factors decreased – significance of anomalies increased

Lepton Flavor Universality

- Fundamental in of the Standard Model
 - Very well tested
- Clean observables
- Only new particles can lead to LFU violation

Result - Separate Lepton Flavor!

- The Largest deviation in the muon mode with 2.6σ
- Electron mode is deviating with 1.1σ
- Test on Lepton flavor universality

Simon Wehle (Deutsches Elektronen-Synchrotron)
Lepton Flavor Universality in Angular Observables

- Test lepton flavor universality
- Observables $Q_i = P_i^{\mu} P_i^{e}$, JHEP 10, 075 (2016)
- Deviation from zero very sensitive to NP

Published recently in Phys. Rev. Lett. 118, 111801 (2017)

Simon Wehle (Deutsches Elektronen-Synchrotron) 🕜 🗆 🕨 🖉 🕨 🖉 🖉 🖉 🖉 🖓 🖓

Simple Lepton Flavour Universality Tests

$$R_{\mathcal{K}} = \frac{\mathcal{B}(B^+ \to \mathcal{K}^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to \mathcal{K}^+ e^+ e^-)}$$

$$R_{K}^{*} = \frac{\mathcal{B}(B^{0} \to K^{*0}\mu^{+}\mu^{-})}{\mathcal{B}(B^{0} \to K^{*0}e^{+}e^{-})}$$

- Theoretically very clean
- Uncertainties from form factors cancel in the ratio
- Control mode $B \rightarrow J/\psi \kappa^{(*)}$

Experimental Results for R_K

- Consistent experimental results
- Updated Belle result in preparation
 - Possible results for R_K^{*0} and R_K^{*+}
- 25% effect against SM for muons in electroweak penguins

Effective Hamiltonian Approach

- i=7 : photon i=9 : vector current i=10 : axial-vector current i= S.P : scalar, pseudo scalar operators
- The $b \rightarrow s\ell\ell$ decay can be described by an effective field theory
- Model independent description: ►

Constraining Wilson Coefficients

- ► Look across all different measurements of b → sℓℓ
- Short distance effects can be described by Wilson Coefficients C_i
- $C_{7,9,10}$ important for $b \rightarrow s\ell\ell$ processes

- *F_L* from Atlas and LHCb
- AFB from Atlas and LHCb
- *R_K* from BaBar and LHCb
- Branching ratios for $b \rightarrow s\ell\ell$
- ► P'₅...

\rightarrow constrain Wilson Coefficients C_i across measurements and experiments

Fits for New Physics in Wilson Coefficients

- ▶ Many theorists perform global fits of O(150) measurements
- \blacktriangleright Pull for the SM at the level of 4.4-5 σ

Fits for Lepton Flavor Universality

Lepton Flavor Non Universality favored with > 3σ

Lepton Flavor Universality in $R_{D^{(*)}}$

$$R_{D^{(*)}} = rac{\mathcal{B}(B o D^{(*)} au
u)}{\mathcal{B}(B o D^{(*)} \mu
u)}$$

- Tree level decay
- Theoretically very clean observable
- Neutrinos in final state

Lepton Flavor Universality in $R_{\rho}^{(*)}$

Lepton Flavor Universality in $R_{D^{(*)}}$

- Tension with SM $> 4\sigma$
- 30% effect against SM for taus in tree level decays

Did we find new Physics?

What does it mean?

Did we find new Physics?

- The anomalies are difficult to explain at once
- Two models are favored:

- Both cases may enhancement $b \rightarrow s \tau \tau$
- LQ: large enhancement of $b
 ightarrow s \mu au$

Motivation for b ightarrow s au au at Belle

Motivation

- ▶ New Physics may couple to mass of the τ → enhance sensitivity by $|m_{\tau}/m_{\mu}|^2 \simeq 286$
- Both Z' and leptoquark models predict large enhancements [1704.05340]

The ${\it B}^+
ightarrow {\it K}^+ au^+ au^-$ Decay

- ▶ $\mathcal{B}(B^+ \to K^+ au au)^{SM} < 1.44(15) imes 10^{-7}$
- Some models may lead to a strong enhancement

•
$$\mathcal{B}(B
ightarrow K au^- au^+)^{MLFV} < 2 imes 10^{-4}$$

Alonso, R., Grinstein, B. & Camalich, J.M. J. High Energ. Phys. (2015) 2015

► Only experimental constraints by BaBar with $\mathcal{B}(B^+ \to K^+ \tau^+ \tau^-) < 2.25 \times 10^{-3}$ at 90% C.L..

Simulation for ${\it B}^+ ightarrow {\it K}^+ au^+ au^-$ at Belle

- Signal is Identified in calorimeter energy related observable E_{ECL}
- All systematic uncertainties are calculated
- Expected upper limit: $\mathcal{B}(B^+ \to K^+ \tau^+ \tau^-) < 3.17 \times 10^{-4}$ at 90% C.L. on MC

Important recent Measurements

$B_{d,s} ightarrow \mu \mu$

- Golden mode to study at LHC(b)
- ► LHCb: Single experiment observation of $B_s^0 \rightarrow \mu^+ \mu^-$ with more than 7σ
- Powerful probe of models with enhanced (pseudo)scalar interactions

0.8 $3(B^0 \rightarrow \mu^+ \mu^-)$ [10⁻⁹] ATI AS [LHCb s = 7 TeV 4.9 fb 0.6 (s = 8 TeV 20 fb õ, CMS. EPJC 76 (2016) 0.4 Nature 522 0.2 SM 513 (2015) ATLAS surs for $-2 \operatorname{Aln}(L) = 2$. -0.2 $B(B_{0}^{0} \rightarrow u^{+} u^{-})[10^{-9}]$ Correlation between B⁰ and B_e due to mass resolution 10 Candidates [LHCb, PRL LHCb 103 10^{2} Fotal 118 -1 × Signal Background 10 (2017) 251802] Juli 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Neural network output

$B_{d,s} \to \tau \tau$

- ▶ LHCb measurement using $\tau \to \pi^- \pi^+ \pi^- \nu_\tau$
- $\mathcal{B}(B_s^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3} (95\% \text{CL})$
- $\mathcal{B}(B^0_d \to \tau^+ \tau^-) < 2.1 \times 10^{-3} (95\% \text{CL})$

Important Measurements Wish-List

Branching Fractions of Charmless Leptonic B_s decays

1. $B_s \rightarrow \phi e^+ e^-$

- **2.** $B \rightarrow K^{(*)} \tau \tau$
- 3. $B \rightarrow K^{(*)} \mu \tau$
- **4.** $B \rightarrow K^{(*)} \nu \nu$
- 5. $B_s \rightarrow \ell^+ \ell^-$
- 6. $B_s \rightarrow \ell^{+\prime} \ell^-$

7. ...

Move Towards Belle 2

(Credit: F. Bernlocher)

Belle II Detector Upgrade

40x instantaneous luminosity is expected to represent significantly higher background levels in all Belle II subdetectors.

hua.ye@desy.de

(Credit: E Bernlocher)

Simon Wehle (Deutsches Elektronen-Synchrotron)

Super B Project - Highlights

Phase I: SuperKEKB first turns 2016

Feb 2016 News: First Turns at SuperKEKB (4 GeV e+'s and 7 GeV e-'s)

April 19, 2016 (LER beam current at 540 mA, HER at 480 mA)

(Credit: T. Browder)

Introduction

Phase I: The Beast

Simon Wehle (Deutsches Elektronen-Synchrotron)

Phase II preparation: Final Focus Magnets Integration

Phase II preparation: Final Focus Magnets Integration

Phase II preparation: Detector Roll In

Phase II preparation: Detector Closed

Phase II preparation: First Cosmic Events

Phase III preparation: Vertex Detector Assembly

The next Generation of Flavor Factories

Belle 2 and LHCb Projections

J. Albrecht et al., Future prospects for exploring present day anomalies in flavour physics measurements with Belle II and LHCb

Both Belle II and LHCb can individually verify the flavor anomalies

Next Generation of Experiments

- Both LHCb and Belle II have their strength and weaknesses
- We need to have a confirming experiment!

Conclusion

- We can find new physics
- In not too distant future

If there is new physics in the flavor sector, we will find it!

Next Generation of Experiments

- Both LHCb and Belle II have their strength and weaknesses
- We need to have a confirming experiment!

Conclusion

- We can find new physics
- In not too distant future

Thank you!

Simon Wehle (Deutsches Elektronen-Synchrotron) < ロ ト < 回 ト < 臣 ト < 臣 ト 三 ニ のへへ

New Physics in b ightarrow s au au Transitions

scalars (e.g. in 2HDMs)

if scalar couplings to leptons are prop. to the masses $\Rightarrow B_{\rm S} \to \mu^+\mu^-$ is the most important probe

generic 2HDMs allow for much richer flavor structure $\Rightarrow b \rightarrow s\tau^+\tau^-$ transitions can give important info

vectors

photon and Z are couple lepton flavor universaly \Rightarrow strong constraints from $b \rightarrow s \mu^+ \mu^-$

Z' gauge bosons can violate lepton flavor universality $\Rightarrow b \rightarrow s\tau^+\tau^-$ transitions are complementary probes

leptoquarks

generically no reason to expect lepton flavor universality

(Credit: W. Altmannshofer)

Background Suppression - Best Variables

- $\mathcal{NB}(B_{tag})$ is the NeuroBayes output of the B_{tag} candidate.
 - $M_{K^+\tau^-}$ invariant mass of the K^+ and τ^- .
 - \hat{p}_{τ^+} the momentum of the positively charged τ in the rest frame of the signal *B* candidate.
- **decayhash** Decay hash value corresponding to the six possibilities for the mass hypotheses of the children of the τ (*ee*, *e* μ , *e* π , $\mu\mu$, $\mu\pi$ and $\pi\pi$).
- $\mathcal{NB}(\tau^+ \times \tau^-)$ is the product of the NeuroBayes outputs of the children of both τ .
 - ΔE^{tag} the beam constrained energy of the B_{tag} candidate.

...

Background Suppression - Best Variables

Figure: Some of the used input variables for the classifiers.

The Belle Experiment

- The Belle experiment is located at the KEKB accelerator in Tsukuba, Japan
- Data taking from 1999 to 2010
- It is designed as a "B factory"
- ► 772 million *B*B̄ meson pairs

$$e^+e^- o \Upsilon(4S) o Bar{B}$$

World record for integrated luminosity

$$\int Ldt = 1 \text{ ab}^{-1}$$
Reconstruction of $B \to K^* \ell^+ \ell^-$

- Reconstructing B⁰ and B⁺ modes
- Using muon and electron modes
- K^* is reconstructed in $(K^+, \pi^-), (K^0_S, \pi^+)$ and (K^+, π^0)

Electron ModesMuon Modes \triangleright $B^0 \rightarrow K^*(892)^0 e^+ e^ \triangleright$ $B^0 \rightarrow K^*(892)^0 \mu^+ \mu^ \triangleright$ $B^+ \rightarrow K^*(892)^+ e^+ e^ \triangleright$ $B^+ \rightarrow K^*(892)^+ \mu^+ \mu^-$

Signal selection:

- Neural network (NN) classifier for all particles in the decay chain
- ▶ Final signal selection on four *B* meson NN
- NN cut optimization on 2D figure of merit separate for the lepton flavor

Simon Wehle (Deutsches Elektronen-Synchrotron) (