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The Large Hadron Collider (LHC)

Twin-ring synchrotron collider

2 counter-rotating beams

Collides p, 208Pb82+, 129Xe54+

8 straight insertion regions (IRs) & 8 bending Arcs ‘A12 → A81’
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23 repeating ‘cells’ per Arc

Linear & nonlinear optics errors at injection dominated
by errors in main dipoles (MB) & main quads (MQ)
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23 repeating ‘cells’ per Arc

Linear & nonlinear optics errors at injection dominated
by errors in main dipoles (MB) & main quads (MQ)
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The Large Hadron Collider (LHC)

8 insertions:

IR2: LHB1 injection + HEP (ALICE)

IR8: LHB2 injection + HEP (LHCb)

IR1: HEP (ATLAS)

IR5: HEP (CMS)

IR3: COLLIMATION (momentum)

IR7: COLLIMATION (transverse)

IR4: Acceleration + instrumentation

IR6: LHCB1+B2 BEAM DUMP
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For luminosity production squeeze β∗ in experimental IRs

→ Run1 β∗ ≥ 0.6 m, Run2 β∗ ≥ 0.25 m
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Dedicated nonlinear correctors for sextupole→dodecapole, located
left/right of all experimental IRs

LHC: b3, a3, b4, a4, b6

HL-LHC: b3, a3, b4, a4, b5, aa5, b6, a6

Never used in operation prior to 2017
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Linear & nonlinear optics studies at the LHC

LHC optics measurement & correction team (2017)
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First optics activity every year is commissioning

Essential studies to prepare for Luminosity production

around 1month at start of each year
→ extra commissioning for special runs (Heavy Ion, High-β...)

Traditionally concerned with linear optics



E.H.Maclean, CEA Saclay, 28th September 2018

Optics measurement via excitation & spectral analysis

→Use driven oscillations of the beam via AC-dipole

No decoherence of forced oscillations

No blow-up due to adiabatic ramp-up/down

Safe
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∼500 dual plane BPMs record turn-by-turn

betatron oscillation data during kicks

Spectral analysis to obtain phase advances

between BPMs

Reconstruct β-functions via N-BPM method

Phys. Rev. ST Accel. Beams 18, 031002

Phys. Rev. Accel. Beams 20, 111002
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https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.031002
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.20.111002
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Linear optics errors in LHC are substantial!

LHC not allowed to operate for Lumi-production if ∆β/β & 18 %
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First corrections are for large local errors (e.g. in IRs)
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→ Model independent

Examine deviation of betatron phase
from expected value over segment

Use LHC models to match quadrupole
settings to reproduce errors

Phys. Rev. ST Accel. Beams 12, 081002

https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.12.081002
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Use complementary observables to better constrain corrections in
critical areas such as experimental insertions e.g. ‘K-modulation’

∆Qx,y ∝ ∆K1Lβ̄x,y
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Local corrections remove most β-beating
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Global corrections give final optimization

Response matrix adjusts remaining quadrupole circuits
(

~∆φx , ~∆φy , ~β∗

x , ~β∗

y , ~∆Dx/
√

βx ,∆Qx ,∆Qy , ...
)

= R · ~∆k

Typical RMS ∆β
β

≈ 2%

PEAK ∆β
β

≈ 5 − 10%
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Also correct linear transverse coupling (|C−|)

Drive Qx − Qy resonance

Generates a closest tune approach
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Correct coupling by minimizing strength of Qx − Qy resonance

→ characterized by |f1001| Resonance Driving Term
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Why the concern with hadron collider optics?
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Why the concern? → machine protection

LHC beams store a huge amount of energy (360 MJ, 1 MJ ≈ 0.25 kg of TNT)

can quench superconducting magnets

can physically damage materials in the ring
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Why the concern?→ performance

Key figure of merit for us is of-course Luminosity

Rp = Lσp

L =
N1N2 (fref ncoll)

2π
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× (reduction factors)

σz,b =
√

β∗
z,bǫz,b where z = x , y and b = 1, 2

Optics errors can reduce data delivered to HEP experiments

Create Luminosity imbalance between HEP experiments

Aim for β∗-beat ≤ 1 %
Record low β beating in the LHC, PRSTAB 15, 091001

LHC optics commissioning: A journey towards 1% optics control, PRAB 20, 061002

High quality optics corrections provide clean baseline upon which
to begin the study of nonlinear optics errors!

https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.15.091001
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.20.061002
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Nonlinear optics not traditionally part of LHC commissioning

→ studied in dedicated Machine Development (MD) beam tests

4-5 LHC MD blocks per year (∼ 1 week/block)

Allocated a block of time for MD (6 − 12 hours)

First task (circa. 2011-2012): how large are nonlinearities at
injection? → two key observables used:

Nonlinear Chromaticity
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Change of tune with momentum. Measure by varying RF-frequency

Different orders of NL-chromaticity can provide information on
different multipole errors (subject to some complications)
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Measure with nominal spool-piece correction already applied (red)
(based on magnetic measurements during construction)

Second-order chromaticity 10×worse than expected
Third-order chromaticity 2×worse than expected
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octupolar/decapolar-spools respectively (blue)
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Amplitude detuning
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Change of tune with betatron oscillation amplitude

Excite betatron oscillations of a bunch to various amplitudes
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Q ′′ correction also corrected first-order amplitude detuning
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Also observe improved decoherence of single kicks and reduced
beam-losses with AC-dipole
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Points to broadly distributed octupole sources in the arcs



E.H.Maclean, CEA Saclay, 28th September 2018

When correcting Q ′′′ with decapoles observe significant ∆Q ′′

Scaling observed ∆Q ′′/IMCD to nominal corr’ explains most missing Q ′′

Improved estimate of hysteresis in MCO explains remainder

Measure without octupole or decapole spools
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Spool piece ‘correction’ actually made errors worse!
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During operation for Lumi-production nonlinearities at injection
dominated by detuning introduced by Lattice octupoles (MO)

→ Provides Landau damping for collective instabilities
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Subject to 1 big caveat: transverse coupling
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Simulated detuning shifts from typical OP-range of |C−| significantly
larger than uncertainty on magnetic measurements

→ Backed up by measurements with different |C−| and RDT
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Linear coupling is biggest source of uncertainty/variability in LHC
NL-observables Effect of linear coupling on nonlinear observables at the LHC, IPAC’17, WEPIK092

Must be accounted for whenever performing NL-measurements & correction

http://accelconf.web.cern.ch/AccelConf/ipac2017/papers/wepik092.pdf
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Care needed when detuning towards the Qx − Qy resonance

→ Observe saturation of Q-split vs J far above linear ∆Qmin

→ Interpret as an Amplitude Dependent Closest Tune Approach
Measurement of nonlinear observables in the Large Hadron Collider using kicked beams, PRAB 17, 081002
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Model shows large contribution to NL-∆Qmin from combination of
Landau octupoles + |C−| Non-linear coupling studies in the LHC, IPAC’15, TUPTY042

Theoretical description proposes additional contribution to ∆Qmin

which is ∝ κ (linear ∆Qmin) and ∝ h1111 (cross-term detuning)
Amplitude dependent closest tune approach, PRAB 19, 071003

Validated by canceling cross-term detuning (h1111)

http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/tupty042.pdf
http://cdsweb.cern.ch/record/2128976/files/PhysRevAccelBeams.19.071003.pdf


E.H.Maclean, CEA Saclay, 28th September 2018

Normal and skew octupoles together also generate amplitude
dependence of closest tune approach
Amplitude dependent closest tune approach generated by normal and skew octupoles, IPAC’17, WEPIK091
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Linear coupling & skew octupoles can significantly distort the
Q-footprint introduced to provide Landau damping
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Potentially a significant challenge in regard to dealing with
collective effects in LHC/HL-LHC
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Introduction of large detuning by Landau octupoles also causes
approach to low-order 1D resonances)
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Simultaneously hitting 4Qx & 3Qy
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Some interesting consequences from low-order resonances

→ e.g. abrupt beam-losses during octupole trim
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Consider ‘toy’ model

→ slowly reduce octupole kick strength

→ Central orbits restored to elliptical trajectories

→ Particles in islands transported out to larger amplitude
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followed by ramp-down to zero
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Beam Loss Monitors (BLM) show
losses at the vertical collimator
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Poincaré section at vertical collimator via numerical tracking

→ losses explained by transport of particles in 3Qy islands to collimator
(expect complete loss of island once any core touches collimator)
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Very similar to multi-turn extraction procedure used in SPS

Exploring as a potential mechanism for
beam loss & emittance growth in LHC ramp
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Dynamic aperture (DA)
→ amplitude below which particles will survive for a specific number of turns

→ can reduce beam lifetime causing lower delivered luminosity
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volunteer computing essential for tracking studies of CERN accelerators

→ BOINC / LHC@home: http://lhcathome.web.cern.ch/

http://lhcathome.web.cern.ch/
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Important task in MD is to understand how well simulation codes
agree with the real world!

Traditional measurement via single kicks
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LHC ‘aperture kicker’ dipole ramps
up/down in ∼ 1/2 turn

Provide large amplitude displacement
of pilot bunch (∼ 1010p)

Kick action determined from TbT
BPM position data

Beam-loss following kick determines
distance between kick and DA(N)



E.H.Maclean, CEA Saclay, 28th September 2018

Compare measured DA to best-knowledge model in SIXTRACK
Phys. Rev. ST Accel. Beams 17 081002 (2014)

e.g. 105 turn (∼ 30 s) DA at injection in OP-configuration
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Removing nonlinear sources (turn off lattice octupoles &
correct Q ′′/Q ′′′) improves dynamic aperture
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e.g. 105 turn (∼ 30 s) DA at injection after all corrections
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Measurement via single-kicks shows excellent agreement to model
predictions at injection (within 10%)
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Single-kick DA measurements impossible to apply at 6.5 TeV

Machine protection concerns
→ large, rapid losses upon kick risk quench, or even damage!

Time concerns
→ require fresh injection after every kick

Two possible alternatives:

Short-term DA of driven oscillations with AC-dipole

Long-term DA (free oscillations) of large emittance bunch



E.H.Maclean, CEA Saclay, 28th September 2018

AC-dipole DA → Ph.D thesis of Felix Carlier (CERN)

DA of forced oscillations not the same as free oscillations
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Still provides a useful probe to examine nonlinear resonances

Require sufficient driven DA in order to use AC-dipole to
commission the LHC/HL-LHC
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Measurement of DA evolution using transverse damper
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Tested at injection with a few large, well known sources
(vary octupole spool powering ∼ 10× required b4 correction)
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Comparable degree of agreement to model as for single-kicks,
at the level of 10 %
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First application at 6.5 TeV, β∗ = 0.4 m to asses impact of
dodecapole sources in experimental IRs on DA
CERN-ACC-NOTE-2018-0054
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No significant effect on DA for LHC

Should expect b6 to become relevant for very low-β∗ in HL-LHC

http://cds.cern.ch/record/2632203
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Beams blown up in only H or V give information on shape of DA

Simulated DA shows clear asymmetry between H and V planes

Replicated in observed losses for bunches blown up in only 1-plane
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DA looks like effective tool to study NL-errors at 6.5 TeV

→ experience at injection shows benefit of multiple observables

Well defined and understood relation between detuning of
free & driven betatron oscillations validated at injection
S. White, R. Tomás, E.H. Maclean Phys.Rev.ST.AB,16,071002(2013)

https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.16.071002
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Measure second-order detuning (∝ J2) and feed-down to
first-order detuning (∝ J) to study decapole/dodecapole errors
CERN-ACC-NOTE-2018-0021
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http://cds.cern.ch/record/2306295
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Traditionally LHC commissioning only concerned with linear optics
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Decapole errors are too small to measure in LHC and
no correction has been implemented

As β∗ has been reduced sextupole & octupole errors in
ATLAS & CMS IRs have become relevant to operation

First combined linear and nonlinear optics commissioning of the
LHC was performed in 2017
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A new activity for the
OMC team...
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Very large octupole errors identified via amplitude detuning
measurements with the AC-dipole

IR-octupole errors distort tune footprint during β∗-squeeze

Desired MO footprint, Obtained footprint

Potential for loss of Landau damping during β∗ squeeze
if IR-b4 is not corrected



E.H.Maclean, CEA Saclay, 28th September 2018

Design strategy would base corrections on magnetic-measurement

→ Find significant discrepancies with beam-based measurements
First measurement and correction of nonlinear errors in the experimental insertions of the CERN Large Hadron Collider

PRSTAB 18, 121002
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Octupole feed-down agrees with magnetic model of IR1, but not IR5

Apply model-based correction to IR1 & minimize remaining
detuning via correctors in IR5
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Corrected amplitude-detuning
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Corrected feed-down to tune
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Reduced strength of 4Qx resonance
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Clear improvement to online tune measurement
upon IR-octupole correction:

→ Mandatory to obtain good K-mod at 30cm!

→ Successful linear commissioning relies on nonlinear corrections!
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No obvious impact on lifetime at 0.4 m

Clear improvement to lifetime at 0.14 m

during dedicated machine tests
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Sextupole & skew octupole corrections reduce feed-down to
linear coupling in as a function of crossing-angle
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Big skew octupole FD!
(quadratic)

Without correction crossing angle luminosity levelling could
lead to loss of Landau damping
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Sextupole corrections applied to minimize feed-down to Q

Due to orientation of crossing-angle planes performed with
skew sextupole in IR1 & normal sextupole in IR5
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Corrected feed-down to tune in IR1 and IR5

→ reduced strength of 3Qy resonance
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Corrected feed-down to tune in IR1 and IR5

→ Improved stability of linear optics vs X’ing scheme
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considered in LHC commissioning



E.H.Maclean, CEA Saclay, 28th September 2018

Is it worth all the night shifts?
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Linear optics in LHC is very well controlled

Has a well developed program to perform beam-based study of
the nonlinear optics

Identify and improve upon any limitations of our understanding of
the single-particle beam-dynamics in the LHC

Develop / refine measurement techniques, with particular emphasis
on study at high-energy for LHC/HL-LHC

Use broad range of beam-based observables to ensure best optics
corrections

Inclusion of nonlinear optics corrections into regular LHC
commissioning has been of significant benefit to operation
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Many thanks for your attention!


