

Overview

-Low Energy V_{e} appearance Excess
-MicroBooNE experiment

- MicroBooNE LEE searches
-The Deep Learning LEE search

Low Energy Excess

- LSND and MiniBoonE observed an excess of v_{e} appearance at low energies
- Best fit in tension with global 3+1 neutrino models

MiniBooNE Detector

Low Energy Excess

- v_{e} appearance :
- KARMEN \rightarrow limit
- ICARUS \rightarrow limit
- NOMAD \rightarrow limit
- OPERA \rightarrow limit
- MiniBooNE \rightarrow signal
- LSND \rightarrow signal
- v_{e} disappearance :
- KARMEN + LSND \rightarrow limit
- Reactor Anomaly \rightarrow signal
- Neutrino-4 \rightarrow signal (arxiv 1809.10561)
- ILL \rightarrow signal (arxiv 1802.07763)
- $\mathbf{v}_{\boldsymbol{\mu}}$ disappearance :
- MiniBoonE + SciBooNE \rightarrow limit
- MINOS \rightarrow limit
- CCFR, CDHS \rightarrow limit
- IceCube \rightarrow limit

Appearance

Disappearance

Fermilab Neutrino Beamlines

Adrien Hourlier - MicroBooNE - MIT

The Booster Neutrino Beamline

- 8 GeV protons from the Booster, beam spill at 5 Hz
- Hosts the Short Baseline Neutrino Program :
- SBN Near Detector
- MicroBooNE
- ICARUS
- 3 detectors, same target nucleus, same operational technology
- Definitive test of LSND oscillation using three baselines
- Simultaneous $v \mu$ disappearance and v_{e} appearance searches

The MicroBooNE Experiment

- MicroBooNE is a neutrino experiment using a Liquid Argon Time Projection Chamber (LArTPC)
- Physics Goals of MicroBooNE :
- To investigate the MiniBooNE and LSND ve appearance excess at low energy - to confirm or deny potential evidence for sterile neutrinos
- To measure neutrino-argon cross section around 1 GeV
- To pursue R\&D studies for LArTPC operations and exploitation for larger programs (SBN, protoDUNE, DUNE)

The MicroBooNE Detector

- Micro Booster Neutrino Experiment
- 85 ton active mass Liquid Argon TPC
- $\mathrm{v}_{\mathrm{H}} \rightarrow \mathrm{V}_{\mathrm{e}}$ appearance experiment
- Booster Neutrino Beam-line
- Taking data since October 2015
- Cosmic ray tagger added in 2016
- > 97\% detector up time
- 1.1×10^{21} POT delivered

The MicroBooNE Detector

- Time Projection Chamber
- 85 active tons of Liquid Argon
- 32 cryogenic PMTs
- 2400 U-wires $\left(+60^{\circ}\right)$
- 2400 V -wires $\left(-60^{\circ}\right)$
- 3456 Y-wires (vertical)
- 3 mm wire pitch

Raw Event Example

The MicroBooNE Detector

- A charge deposition in the detector drifts into a "unique" combination of U, V and Y wires
- There is actually a time degeneracy
- In the drift dimension, we need a T 0 , and the known drift speed to get the position
- T0 is given by
- trigger time (we know when neutrinos interact)
- PMT signal

LArTPC : why are they so cool?

- LArTPCs produce bubble chamber-like images!
- Able to "see" the interaction
- more "intuitive"
- rely less on the light production model
- can use event topology to reject background
- LArTPCs are ~1000x faster than bubble chambers
- LArTPCs produce digitized images, processed by computer

LArTPC : why are they so hard?

- Huge amount of data to process
- Pattern, topology (i.e. kinematics) is an important parameter, need algorithms smart enough to recognize them without bias and recognize backgrounds
- Some events are hard to identify, even for a trained human!

The Road to Low Energy Excess

Low Energy Excess Investigations

Commissioning

Recent Physics Results

CC Inclusive Cross Section

- High efficiency \& purity
- Insensitive to hadrons
- Constrain ve rate

MICROBOONE-NOTE-1045-PUB

ArXiv:1811.02700, submitted PRD
CC π^{0} Cross Section

- First measurement on Ar
- Test shower reconstruction
- LEE photon backgrounds

CC1 μ Np Cross Section

- Proton production
- Proton kinematics

NuMI: Run 5280 Subrun 66 Event 3329 Plane 2

- Larger ve event sample in off

 axis NuMI

Low Energy Excess Searches

- 4 parallel low energy v_{e}-like analysis efforts:
- Pandora CCOTNP
- TrajCluster ve selection
- WireCell selection
- Deep Learning 111p
- γ-hypothesis ($1 \gamma 1 p$) analysis

Adrien Hourlier - MicroBooNE - IVIT
Wirecell event reconstruction

MICROBOONE-NOTE-104O-PUB

Signal Definition

- Excess region at low energy, dominated by CCQE process
- Most events with simple topology

Signal Definition

- We will be focusing on a 1 lepton and 1 proton topology:
- 1 e or μ with KE $>35 \mathrm{MeV}$
- 1 p with $\mathrm{KE}>60 \mathrm{MeV}$
- any number of tracks below threshold
- We will work under the assumption of a CCQE interaction

Machine Learning

Categorization

- LArTPCs provide high resolution pictures of neutrino interactions
- Convolutional Neural Networks (CNN) are design to identify content of images (i.e. self driving cars, bio imagery, etc.)
- CNN look for patterns, most basic => more complex

Detection

Semantic Segmentation

Machine Learning for LArTPC

Bird (Golden-crowned kinglet)

- CNNs look for patterns, pattern associations on rich images
- LArTPCs images are mostly empty (99\% of pixels are empty)
- Neutrinos interactions are a small fraction of the total image
- Particles are mostly tracks or shower, without much pattern
"Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber" JINST 12, P03011 (2017)

Adrien Hourlier - MicroBooNE — MIT

Cosmic Tagger

Semantic Segmentation Networks

- SSNets identify the content of an image, and work the convolution chain back to the location of the identified objects
- Pixel-level identification
- Trained to recognize tracks to shower
- Track/shower boundaries can be potential vertex!
- How to validate such network?

Network on Data

- Network trained on a simulation sample to identify tracks and showers
- Run on a data sample (selection of $\mathrm{v}_{\mu} \mathrm{CC} \pi^{0}$ events)
- "Truth" labelled by a trained human physicist

Human Labeling

Network Labeling

Vertex Finding

OpenCV

- Identify potential neutrino vertices
- Use SSNet's output track-only and shower-only images
- OpenCV libraries for image processing
- First, identify seeds in each image separately
- Track/shower boundary
- Kinks on tracks

Vertex Seeds

OpenCV

- Break down the track-only pixel cluster in sub-clusters :
- High-Charge / Low-Charge
- Linear clusters
- Fit each linear clusters by a line (Principal Component Analysis)
- Vertex Seeds are the cluster break-down points and PCA crossing points

Best Seed Position

- Scan the track-only pixels around found vertex seeds
- For each location, draw a circle centered on the considered point
- Look for crossing points
- define angles θ and Φ
- Optimal seed position is achieved when $\theta \sim \Phi$

Best Vertex Location

Track Reconstruction

Random points in 3D in:

- Sphere around the last found point
- "physics independent" : no assumption on expected curvature radius, kinks, ...
- Forward cone
- $r_{\text {cone }}=2 . r_{\text {sphere }}$
- $\theta_{\text {open }}=30^{\circ}$
- average direction of last 10 cm of the track
- Assumes a globally straight track
- Helps jumping over dead regions and faint tracks

Reconstruction Example

true
$\mathrm{E}_{\mathrm{v}}=974.8 \mathrm{MeV}$
$\mathrm{KE}_{\mu}=602.9 \mathrm{MeV}$
$K E_{p}=225.9 \mathrm{MeV}$
reconstructed
$\mathrm{E}_{\mathrm{v}}=993 \mathrm{MeV}$ $\mathrm{KE}_{\mu}=626.8 \mathrm{MeV}$ $K E_{p}=220.6 \mathrm{MeV}$

- Kinetic energy from the reconstructed range
- Proton/muon candidate based on average pixel intensity
- Neutrino energy : $E_{\nu}^{\text {range }}=\mathrm{KE}_{p}^{\mathrm{range}}+\mathrm{KE}_{\mu}^{\mathrm{range}}+m_{\mu}+m_{p}-m_{n}+B$
- B is an effective nuclear binding energy for the CCQE interaction ($\sim 40 \mathrm{MeV}$)

Tracking diagnostic

- At the end of each track throw 3D points in a forward spherical cap of radius 3 cm and opening angle 37°
- 3 possible cases:
- points in dead region
- points in empty region
- points on a non-empty region
- All in empty pixel = reached end of track
- 2 planes in dead regions and 1 plane empty = tracker stopped in dead region
- Other cases are failing in the middle of tracks
- Attribute a "good reconstruction" label to each track found in the vertex

Reconstruction Example

 true
$\mathrm{E}_{\mathrm{v}}=496.5 \mathrm{MeV}$
$K E_{\mu}=195.5 \mathrm{MeV}$
$K E_{p}=157.1 \mathrm{MeV}$
reconstructed
$\mathrm{E}_{\mathrm{v}}=498 \mathrm{MeV}$ $K E_{\mu}=201.2 \mathrm{MeV}$ $K E_{p}=162.6 \mathrm{MeV}$

- Reach dead wires in two planes :
- Estimate direction before dead wires
- Push through dead region
- hopefully reconnect to rest of the track
- Mange to recover $\mathbf{\sim} \mathbf{2 0 \%}$ additional events

Angular Resolution

- Define the opening angle as the angle between two tracks

Track Reconstruction performances

- Kinetic energy estimated on the range of the reconstructed tracks
- Residual error show no systematic bias with respect to true kinetic energy
- About 4\% energy resolution on each individual particle

3 energy definitions

$$
\begin{aligned}
E_{\nu}^{\mathrm{range}} & =\mathrm{KE}_{p}+\mathrm{KE}_{\mu}+M_{\mu}+M_{p}-\left(M_{n}-B\right) \\
E_{\nu}^{Q E}[p] & =0.5 \cdot \frac{2 \cdot\left(M_{n}-B\right) \cdot E_{p}-\left((M n-B)^{2}+M_{p}^{2}-M_{\mu}^{2}\right)}{\left(M_{n}-B\right)-E_{p}+\sqrt{\left(E_{p}^{2}-M_{p}^{2}\right)} \cdot \cos \theta_{p}} \\
E_{\nu}^{Q E}[\mu] & =0.5 \cdot \frac{2 \cdot\left(M_{n}-B\right) \cdot E_{\mu}-\left((M n-B)^{2}+M_{\mu}^{2}-M_{p}^{2}\right)}{\left(M_{n}-B\right)-E_{\mu}+\sqrt{\left(E_{\mu}^{2}-M_{\mu}^{2}\right)} \cdot \cos \theta_{\mu}}
\end{aligned}
$$

- Access to the full kinematics of the muon and the protons
- Assuming $1 \mu 1$ p CCQE interaction, we can access the neutrino energy
- MiniBooNE used only the muon kinematics to estimate the neutrino energy
- All three energies should (roughly) agree for 111p CCQE events, but not for more complex topologies, or cosmic background
- The same can be done with an electron hypothesis in the v_{e} case

Track Reconstruction Performance

- Estimate the resolution for:
- contained $1 \mu 1 p \mathrm{v} \mu$ interactions,
- true muon kinetic energy > 35 MeV ,
- true proton kinetic energy $>60 \mathrm{MeV}$
- Overall energy range : (2.2 ± 0.1)\%
- Evolution in $1 / \sqrt{ } E$ typically dominated by stochasticity
- $81 \% / \sqrt{ } \mathrm{E}(\mathrm{MeV})=2.5 \% / \sqrt{ } \mathrm{E}(\mathrm{GeV})=>$ meets DUNE resolution target

Particle ID

- Use a categorization CNN to identify contents of the image centered around the reconstructed tracks
- Classify the probability of presence of 5 types of particles: p, μ, π, e and γ

Data/Simulation Comparison

- We developed a chain of reconstruction and selection of neutrinos based on MC studies
- Need to ensure their performance on data
- Respect blindness : small data sample of $\sim 4 \times 10^{19}$ POT
- Off-beam sample for cosmic rays studies
- MC sample of beam neutrino interactions
- Simulated beam neutrino interactions and cosmic sample are normalized to 4×10^{19} POT and for a predicted spectrum to be compared to data
- Look for significant shape-only differences

Data/Simulation Comparison

Reconstructed \& Selected $E_{\nu}^{\text {range }}$

- No significant distortion in data compared to predictions (within our statistically limited sample)
- Reconstruction, identification and selection seem to behave similarly on data and Monte Carlo

Systematic Uncertainties

- Currently available :
- Beam flux uncertainties
- v-Ar uncertainties
- Oscillation fit and sensitivity study machinery taking into account full systematics
- In progress : detector-based systematics:
- One simulated beam neutrino sample
- Vary detector parameters in multiple possible "universes"
- Build correlations and covariance matrices from the universes

Coming soon

- 2D deconvolution : tracks clearer, easy to follow
- Wire-to-wire cross-talk better accounted for

- Work on a new SSNet that learns spatial coherence
- Knows about rotations between the planes

NVIDIA has created a CNN to fill in dead region in pictures.

- Work on a new CNN to fill in gaps in images
- No more dead wires!

Conclusions

- MicroBooNE employs a novel technology to investigate MiniBooNE's low energy excess
- Several analyses in parallel, developing independent tools that can be valuable for later LArTPC programs
- Data/prediction only show minor disagreement (not statistically significant), shows good maturity of the chain
- Upcoming improved signal processing and neutrino generators will improve reliability of the predictions and robustness of the Monte Carlo events

