Joint analysis of galaxy clustering and galaxy-galaxy lensing

Astronomy & Astrophysics manuscript no. rsdlens August 29, 2017 ©ESO 2017

The VIMOS Public Extragalactic Redshift Survey (VIPERS)*

Gravity test from the combination of redshift-space distortions and galaxy-galaxy lensing at 0.5 < z < 1.2

S. de la Torre¹, E. Jullo¹, C. Giocoli¹, A. Pezzotta^{2,3}, J. Bel⁴, B. R. Granett², L. Guzzo^{2,5}, B. Garilli⁶, M. Scodeggio⁶, M. Bolzonella⁷, U. Abbas⁸, C. Adami¹, D. Bottini⁶, A. Cappi^{7,9}, O. Cucciati^{10,7}, I. Davidzon^{1,7}, P. Franzetti⁶, A. Fritz⁶, A. Iovino², J. Krywult¹¹, V. Le Brun¹, O. Le Fèvre¹, D. Maccagni⁶, K. Małek¹², F. Marulli^{10,13,7}, M. Polletta^{6,14,15}, A. Pollo^{12,16}, L.A.M. Tasca¹, R. Tojeiro¹⁷, D. Vergani¹⁸, A. Zanichelli¹⁹, S. Arnouts¹, E. Branchini^{20,21,22}, J. Coupon²³, G. De Lucia²⁴, O. Ilbert¹, T. Moutard^{25,1}, L. Moscardini^{10,13,7}, J. A. Peacock²⁶, R. B. Metcalf¹⁰, F. Prada^{27,28,29}, and G. Yepes³⁰

(Affiliations can be found after the references)

August 29, 2017

Pauline Zarrouk

LAM

Saclay Cosmo Club (DPhP, CEA)

Outline

I)

II)

Motivations for GC + GL

1a Galaxy clustering (GC)

1b Galaxy lensing (GL)

Methodology

- a Galaxy clustering
- ^{2b} Galaxy lensing
- ^{2c} Lightcone mocks
- d Covariance matrix

Pauline Zarrouk

Motivations for GC + GL

Plot from Martin Kilbinger @Euclid Summer school 2017

$$ds^{2} = -(1 + 2\varphi)dt^{2} + (1 - 2\phi)a^{2}dx^{2}$$

Matter gravitational potential Galaxy clustering (GC) \rightarrow Measures φ \rightarrow fo₈ and bo₈

Note: in General Relativity $\varphi = \phi$

Light gravitational potential Galaxy lensing (GL)

- \rightarrow Measures $\varphi + \phi$
- → Measures b anu σ_8

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA)

Motivations for GC + GL Galaxy clustering (GC)

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA) November

November 6th, 2018 4/35

Saclay Cosmo Club (DPhP, CEA) November 6th, 2018 5/35

Saclay Cosmo Club (DPhP, CEA) November 6th, 2018 5/35

Saclay Cosmo Club (DPhP, CEA) November 6th, 2018 6/35

Clustering analysis Full-shape modeling

I) Real-to-redshift space mapping

II) Perturbation theory for δ and v

III) Bias modeling: halos \rightarrow galaxies

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA) November 6th, 2018 7/35

Motivations for GC + GL Galaxy lensing (GL)

Light of distant galaxies is deflected while travelling through inhomogeneous Universe. Information about mass distribution is imprinted on observed galaxy images.

- Continuous deflection: sensitive to projected 2D mass distribution.
- Differential deflection: magnification, distortions of images.
- Small distortions, few percent change of images: need statistical measurement.
- Coherent distortions: measure correlations, scales few Mpc to few 100 Mpc.

Slide from Martin Kilbinger @Euclid Summer school 2017

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA) N

November 6th, 2018 8/35

Weak lensing analysis Convergence and shear

- convergence κ : isotropic magnification ∂
- shear γ : anisotropic stretching

$$rac{\partialeta_i}{\partial heta_j}\equiv A_{ij}=\delta_{ij}-\partial_i\partial_j\psi.$$

Jacobi (symmetric) matrix

Weak lensing regime

$$A = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}$$

 $\kappa \ll 1, |\gamma| \ll 1.$

The observed ellipticity of a galaxy is the sum of the intrinsic ellipticity and the shear:

$$\varepsilon^{\rm obs}\approx\varepsilon^{\rm s}+\gamma$$

Random intrinsic orientation of galaxies

$$\langle arepsilon^{
m s}
angle = 0 \quad \longrightarrow \quad \left\langle arepsilon
angle = \gamma
ight
angle$$

The observed ellipticity is an unbiased estimator of the shear. Very noisy though! $\sigma_{\varepsilon} = \langle |\varepsilon^{\rm s}|^2 \rangle^{1/2} \approx 0.4 \gg \gamma \sim 0.03$. Increase S/N and beat down noise by averaging over large number of galaxies.

Adapted slide from Martin Kilbinger @Euclid Summer school 2017

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA) November 6th, 2018 9/35

Weak lensing analysis Shear measurement challenges

- Cosmological shear $\gamma \ll \varepsilon$ intrinsic ellipticity
- Galaxy images corrupted by PSF
- Measured shapes are biased

Characterisation

Bias can be multiplicative (m) and additive (c):

$$\gamma_i^{\mathrm{obs}} = (1+m_i)\gamma_i^{\mathrm{true}} + c_i; \quad i=1,2.$$

Biases m, c are typically complicated functions of galaxy properties (e.g. size, magnitude, ellipticity), redshift, PSF, They can be scale-dependent.

Current methods: |m| = 1% - 10%, $|c| = 10^{-3} - 10^{-2}$.

year	program	m	c	$\sigma(c)$
2006	STEP I	0.1		10^{-3}
2012	CFHTLenS	0.06	0.002	
2013	great3	0.01	10^{-3}	
2014	DES	0.03 - 0.04	10^{-3}	
2016	KiDS	0.01 - 0.02	$8\cdot 10^{-4}$	
2021	Euclid required	$2\cdot 10^{-3}$	$5\cdot 10^{-4}$	

Adapted slide from Martin Kilbinger @Euclid Summer school 2017

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA)

November 6th, 2018

10/35

Motivations for GC + GL

Outline

I) Motivations for GC + GL 1a Galaxy clustering (GC) 1b Galaxy lensing (GL)

Methodology

II)

- ^{2a} Galaxy clustering
- ^{2b} Galaxy lensing
- ^{2c} Lightcone mocks
- 2d Covariance matrix

Pauline Zarrouk

Methodology Galaxy clustering

I) Real-to-redshift space mapping

(TNS, Taruya et al. 2010)

 $P^{s}(k,\nu) = D(k\nu\sigma_{\nu}) \left[P_{\delta\delta}(k) + 2\nu^{2} f P_{\delta\theta}(k) + \nu^{4} f^{2} P_{\theta\theta}(k) + C_{A}(k,\nu,f) + C_{B}(k,\nu,f) \right],$

II) Perturbation theory for 8 and v

(HALOFIT, Smith et al. 2003)

 $P_{\delta\delta} \text{ using the latest calibration of HALOFIT, Takahashi et al. 2012)}$ $P_{\theta\theta}(z) = P_{\text{lin}}(z)e^{-km_1\sigma_8^{m_2}(z)}$ Fitting functions of Bel et al. 2017 $P_{\delta\theta}(z) = \left(P_{\delta\delta}(z)P_{\text{lin}}(z)e^{-kn_1\sigma_8^{n_2}(z)}\right)^{1/2}$

III) Bias modeling: halos \rightarrow galaxies (Non-linear non local bias model, McDonald & Roy 2009) $\delta_g(\mathbf{x}) = b_1 \delta(\mathbf{x}) + \frac{1}{2} b_2 [\delta^2(\mathbf{x}) - \sigma^2] + \frac{1}{2} b_{s^2} [s^2(\mathbf{x}) - \langle s^2 \rangle]$

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA) November 6th, 2018 13/35

Methodology Galaxy clustering

de la Torre et al. 2017

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA)

November 6th, 2018 14/35

stack $\rightarrow \langle \varepsilon^{s} \rangle = 0$

Observable: differential excess surface density

$$\Delta \Sigma_{gm}(r_p)$$

$$\frac{\sum_{i=1}^{N_s} \sum_{j=1}^{N_L} w_i^S \left\langle \Sigma_{\text{crit, }ij}^{-1} \right\rangle^2 \Theta_{ij}(r_p)}{\sum_{i=1}^{N_s} \sum_{j=1}^{N_L} w_i^S \left\langle \Sigma_{\text{crit, }ij}^{-1} \right\rangle^2 \Theta_{ij}(r_p)}$$

 $\sum_{i=1}^{N_S} \sum_{i=1}^{N_L} w^{S} \frac{e_{ti}}{\sum_{i=1}^{L}} \Theta_{ii}(r_n)$

Inverse-variance weight to downweight pairs at close z (average over the source redshift PDF)

related to $\Omega_{\rm m}$ and $\xi_{\rm gm}$

Weight to account for biases in the determination of ellipticities (using simulations)

$$\left\langle \Sigma_{\rm crit}^{-1} \right\rangle = \int_{z_{\rm L}}^{\infty} dz_{\rm S} p_s(z_{\rm S}) \Sigma_{\rm crit}^{-1}(z_{\rm L}, z_{\rm S}) \text{ source redshift probability distribution function } p_s$$

$$\Sigma_{\rm crit} = \frac{c^2}{4\pi G} \frac{D_{\rm S}}{D_{\rm LS} D_{\rm L}} \qquad \text{In the above equations, } r_p \text{ is the comoving transverse distance between lens and source galaxies, } D_{\rm S}, D_{\rm LS}, D_{\rm L} \text{ are the angular diameter observer-source, lens-source, and observer-lens distance transverse, and c is the speed of light in the vacuum.}$$

- > Estimator 1: using $\Sigma_{\text{crit, }ij}^{-1}$
- > **Estimator 2**: using $\left\langle \Sigma_{\text{crit, }ij}^{-1} \right\rangle$

Estimator unbiased if redshifts are perfectly known → photometric redshifts

Impact of photometric redshift distribution

 Fiducial: Estimator 2 with individual p_s(z) for sources and z_{spectro/photo} for lenses

Estimator 2 using $p_{\rm s}(z)$ for lenses and $z_{\rm spec}$ for sources (30%)

Estimator 2 using $p_s(z)$ for lenses and z_{photo} for sources

Estimator 1 using maximum likelihood z for lenses and sources

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA) November 6th, 2018 16/35

stack $\rightarrow \langle \varepsilon^{s} \rangle = 0$

Observable: differential excess surface density

$$w_m(r_p) = \frac{\sum_{i=1}^{N_S} \sum_{j=1}^{N_L} w_i^S e_{t,i} \left\langle \sum_{\text{crit, }ij}^{-1} \right\rangle \Theta_{ij}(r_p)}{\sum_{i=1}^{N_S} \sum_{j=1}^{N_L} w_i^S \left\langle \sum_{\text{crit, }ij}^{-1} \right\rangle^2 \Theta_{ij}(r_p)}$$

Inverse-variance weight to downweight pairs at close z (average over the source redshift PDF)

related to Ω_n and $\xi_{\rm gm}$

Weight to account for biases in the determination of ellipticities (using simulations)

Optimal observable for cosmology at 'large' scales: annular

differential surface density

→ remove small-scale non-linear contribution below a cut-off radius r_0 (> $2r_{vir}$, Baldauf et al. 2010)

$$\Upsilon_{gm}(r_p, r_0) = \Delta \Sigma_{gm}(r_p) - \frac{r_0^2}{r_p^2} \Delta \Sigma_{gm}(r_0).$$

Pauline Zarrouk

de la Torre et al. 2017

Specific tools Lightcone mocks, Giocoli et al. 2016

- BigMultiDark simulation (BigMDPL, Prada et al. 2014) : 3840³ particles in 2.5 Gpc/h box size with m_p= 2.36 x 10¹⁰ M_{sun}/h
- Light-cone construction
 - Step1: Simulate background galaxies with 24 lens planes separated by 161 Mpc/h out to 3.9 Gpc/h comoving + using **remapping** technique to reproduce the geometry of VIPERS

$$1 \times 1$$

2.5 Gpc/h

Field name	Size $[\deg^2]$	# Realisations	
W1	8.7 imes1.8	54	
W4	5.5 imes1.6	99	

Pauline Zarrouk

Specific tools Lightcone mocks, Giocoli et al. 2016

- ➢ BigMultiDark simulation (BigMDPL, Prada et al. 2014) : 3840³ particles in 2.5 Gpc/h box size with m_p= 2.36 x 10¹⁰ M_{sun}/h
- Light-cone construction
 - Step2: Ray-tracing method using GLAMER code (which calculates light paths, shear and convergence) + Gaussian random errors on ellipticities to mimic those in the CFHTLens data

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA)

November 6th, 2018

20/35

Specific tools Lightcone mocks, Giacoli et al. 2016

BigMultiDark simulation (BigMDPL, Prada et al. 2014) : 3840³ particles in 2.5 Gpc/h box size with m_p= 2.36 x 10¹⁰ M_{sun}/h

Light-cone construction

Step3: Populate halos with foreground galaxies using HOD + method of de la Torre & Peacock (2013) to reconstruct halos below the resolution limit → M_{min} = 10¹⁰ h⁻¹Msun

Low-mass halos reconstruction (de la Torre & Peacock 2013)

- 1. Reconstruct the halo density field from the simulation catalog
- 2. Use the conditional mass function to populate the simulation with halos below the resolution limit
 - → Shape of halo mass function n(m)→ Bias factor b(m)

For both, use analytic formulae from Tinker et al. 2008

Step4: Apply VIPERS selection function

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA) Novem

November 6th, 2018 21/35

Specific tools Covariance matrix

- Covariance matrix estimated from 54 mocks
- Tapering technique to reduce noise (Paz & Sanchez 2015)

→ narrow the covariance matrix around the diagonal using a positive and compact taper function

→ Depends on a tapering scale: scale above which covariances are nullified. Here, $T_p = 15 h^{-1}Mpc$

Outline

Motivations for GC + GL

Galaxy clustering (GC)

Galaxy lensing (GL)

Methodology

- Galaxy clustering
- Galaxy lensing
- Lightcone mocks
- Covariance matrix

Measurements

I)

II)

Cosmological results

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA) November 6th, 2018 23/35

Tests Fitting range and redshift uncertainties

Saclay Cosmo Club (DPhP, CEA) November 6th, 2018 24/35

Measurements

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA)

November 6th, 2018

25/35

Outline

I)

II)

Motivations for GC + GL

1a Galaxy clustering (GC)

IbGalaxy lensing (GL)

Methodology

- a Galaxy clustering
- ^{2b} Galaxy lensing
- ^{2c} Lightcone mocks
- d Covariance matrix

7) Cosmological results

Pauline Zarrouk

Cosmological results Growth rate

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA)

November 6th, 2018 27/35

Cosmological results Breaking degeneracies

But degeneracies between b₁, f and σ₈ can be broken!
 Particularly powerful for contraints on 1st-order bias

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA) November 6th, 2018

3 29/35

Saclay Cosmo Club (DPhP, CEA)

November 6th, 2018

30/35

Takeaway

- > GC sensitive to φ → measures $b_1\sigma_8$ and $f\sigma_8$
- > GL sensitive to $\varphi + \phi$ > measures b_1 and σ_8
- ➢ Joint analysis of GC+GL:
 - > can **break degeneracies** between b_1 , f and σ_8
 - > provide additional **direct tests of GR**: potentials, gravitational split E_G

➢ In de la Torre et al. 2017:

- Lensing: background sources from CFHTLens
- Clustering: foreground galaxies from VIPERS
- > **Joint likelihood** to combine $\xi_0, \xi_2, \Delta \Sigma_{gm}$ or Y_{gm}
- > Modeling from s_{min} = 8 Mpc/h
- Account for systematics related to spectroscopic incompleteness
- Account for systematics related to redshift uncertainties
- > **Results on f**- σ_8 : at z=0.60 (f, σ_8) = (0.93±0.22, 0.52±0.06) at z=0.86 (f, σ_8) = (0.99±0.19, 0.48±0.04)
- > **Results on E_G** in agreement with previous measurements, slightly lower than predictions from Λ CDM+GR

Pauline Zarrouk

Prospects Future joint analysis

	Survey	Date	Area [deg ²]	$n_{\rm gal} \; [{\rm arcmin}^{-2}]$
VIPERS +	CFHTLenS	2003-2007	170	14
dlT et al. 2017	DLS	2001-2006	25	20
BOSS CMASS	COSMOS	2005	1.6	80
Jullo et al. (in prep)	SDSS	2000-2012	11,000	2
	KiDS	2011-	1,500	7-8
DESI +	HSC	2015-	1,500	~20 22
eBOSS +	DES	2012-2018	5,000	5-6
(e)BOSS/DESI+	CFIS	2017-2020	5,000	6-7
DESI +	LSST	2021-	15,000	~ 30
	Euclid	2021-2026	15,000	~ 30
	WFIRST-AFTA	2024-	2,500	?

from Martin Kilbinger @Euclid Summer school 2017

Overlapping area

- \rightarrow eBOSS + DES: 600 deg² sur le Fat Stripe 82
- \succ CFIS + BOSS: 2,500 deg² / + eBOSS: 3,000 deg²
- \succ DESI + HSC : 1,000 deg²
- > DESI + LSST : current 3,000 deg³ / possible 7,000 deg²

Teaser Joint BOSS CMASS and CFHTLens, Jullo et al. (in prep)

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA) November 6th, 2018 33/35

Teaser Joint BOSS CMASS and CFHTLens, Jullo et al. (in prep)

Pauline Zarrouk

Saclay Cosmo Club (DPhP, CEA) November 6th, 2018 34/35

Bibliography

≻ E_G parameter Reyes et al. 2010

Joint GC + GL
 Baldauf et al. 2010
 Mandelbaum et al. 2010
 Mandelbaum et al. 2013
 Blake et al. 2016
 de la Torre et al. 2017
 Jullo et al. 2018 (submitted)

Mocks with lensing and galaxies Giacoli et al. 2016 and references therein

CMB lensing + galaxy clustering Pullen et al. 2016

