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0.  LYMAN-ALPHA FOREST PHYSICS

Absorption of light by neutral hydrogen

J. Cohn webpage

Absorption along the line of sight 
by clouds (or density fluctuations)

Because of the Hubble expansion, the wavelength of 
the light ray from the source grows with time

The absorption takes place at the 
position along the line of sight 

where the photon was at 1216 A

the measured spectrum is a map 
of the density along the line of 

sight !
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Modeling the Ly-α forest!

Paradigm successes and challenges!

QSO 1422+23!

M. White

Spectrum of the light received 
from a distant quasar

Spectrum ‘=’ density!

strong 
absorption zero transmitted flux F

density peak



Galaxy-IGM connection!M. White

Probe of the IGM

Matter 
distribution on 

large scales

Moderate density 
fluctuations in 
filaments and 

pancakes, outside 
of galaxies (which 

correspond to 
Lyman-limit or 

damped systems)



I.  MODIFIED-GRAVITY  THEORIES

Scalar-tensor theories: add a new scalar field '

5th force typically amplifies gravity and the growth of perturbations.

describing modifying gravity applies to chameleons and
fðRÞ models, symmetrons and dilatons. Here, we will
simply use the fmðaÞ;!ðaÞg parametrization as a way of
unambiguously defining modified-gravity models at the
level of the perturbations.

At the linear level, the perturbation equations of the
CDM fluid follow from the conservation of matter

" ¼ $#0; (1)

where the density contrast is # ¼ ð$m $ !$mÞ= !$m and
" ¼ @ivi is the divergence of the velocity field. We denote
by a prime the time derivative in conformal time %, with
d% ¼ dt=a and aðtÞ is the scale factor. The Euler equation
involves the Newtonian potential " and reads in Fourier
space as

~" 0 þH ~" ¼ k2 ~"; (2)

where we denote Fourier-space quantities with a tilde. Here
H ¼ a0=a is the conformal expansion rate, and we are
using the Newtonian gauge with two distinct potentials "
and #,

ds2 ¼ $a2ð1þ 2"Þd%2 þ a2ð1$ 2#Þdx2; (3)

where x are comoving coordinates. The gravitational dy-
namics determine the evolution of # as

$ k2 ~# ¼ 4&'ðk; aÞG !$m
~#=a; (4)

which is a modification of the Poisson equation ( !$m is the
mean comoving matter density and G is Newton’s con-
stant). We also assume that there is a constitutional relation
between the two potentials,

~" ¼ (ðk; aÞ ~#; (5)

implying that

$ k2 ~" ¼ 4&)ðk; aÞG !$m
~#=a; (6)

where

)ðk; aÞ ¼ (ðk; aÞ'ðk; aÞ: (7)

As a result, this implies that the density contrast obeys

~# 00 þH ~#0 $ 3$m

2
H 2)ðk; aÞ~# ¼ 0; (8)

where$mðaÞ is the matter density cosmological parameter.
The growth of structures depends on the choice of the
function )ðk; aÞ. We will define a large class of such
models in the following section.

B. Parametrized modified gravity

The choice of function )ðk; aÞ seems to be unlimited.
Here we focus on the simple choice

)ðk; aÞ ¼ 1þ *ðk; aÞ (9)

and

(ðk; aÞ ¼ 1þ *ðk; aÞ
1$ *ðk; aÞ ; (10)

where * measures the deviation from GR and is defined by
two time dependent functions only, mðaÞ and !ðaÞ [17]. In
modified-gravity models with a screened scalar field in
dense environments, mðaÞ is the mass of the scalar field
at the cosmological background level. Similarly!ðaÞ is the
coupling function between the scalar field and CDM par-
ticles. The space and time dependent function *ðk; aÞ is
expressed as

*ðk; aÞ ¼ 2!2ðaÞ
1þ m2ðaÞa2

k2

: (11)

This parametrization is valid for chameleons and fðRÞ
models, symmetrons and dilatons [17]. This implies in
particular that

)ðk; aÞ ¼ ð1þ 2!2Þk2 þm2a2

k2 þm2a2
(12)

and

(ðk; aÞ ¼ ð1þ 2!2Þk2 þm2a2

ð1$ 2!2Þk2 þm2a2
: (13)

This is an explicit parametrization, which shows that
modified-gravity effects only appear on scales such that
k * amðaÞ, i.e., when scales are within the Compton
wavelength of the scalar field. Outside the Compton wave-
length, GR is retrieved. These expressions are valid in the
Jordan frame where Newton’s constant becomes time de-
pendent too [17]. For the models we consider here with
m & H, such a time variation can be safely neglected in
the Jordan frame. In the Einstein frame, the particle masses
vary accordingly in a negligible manner.
In the rest of this paper, we will only deal with one

particular family of models defined by the coupling
constant

! ¼ 1ffiffiffi
6

p (14)

and the mass of the scalar field, which is given by

mðaÞ ¼ m0a
$3ðnþ2Þ=2; (15)

where m0 is a free scale that will be chosen to be close to
1 Mpc$1 and n > 0. In the matter dominated epoch, these
models are equivalent to fðRÞ theories in the large curva-
ture regime [17] where the fðRÞ correction to the Einstein-
Hilbert action reads [30]

fðRÞ ' $16&G$% $ fR0

n

R1þn
0

Rn (16)

and $% is the effective dark energy in the late time
Universe. In the recent past of the Universe, the mass of
the large curvature models differs slightly from (15); see
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On small scales, quasi-static approximation, linear regime: 
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B- f(R) theories

check that we recover the correct order of magnitude of the various effects we investigate. In
this section, we briefly present the two modified-gravity scenarios that we will consider.

2.1 f(R) theories

The f(R)-gravity theories are already very strongly constrained by cosmological and astro-
physical data, but they remain interesting as simple examples of modified-gravity effects on
the matter distribution. Moreover, they are the only case where numerical simulations of the
Lyman-α power spectrum have been performed [14]. This will allow us to check the validity
of our analytical modeling. More specifically, we concentrate on a class of f(R) theories of
the Hu-Sawicki [24] type, where the action is given by

Sf(R) =
1

16πGN

∫

d4x
√
−g f(R) (2.1)

with

f(R) = R− 2Λ2 − fR0

R2
0

R
, (2.2)

where Λ2/8πGN is the vacuum energy responsible for the late time acceleration of the Universe.
Here R0 is the Ricci curvature of the Universe now. We consider the cases of such f(R) theories
with fR0

= −10−4, −10−5 and −10−6.

2.2 K-mouflage models

The K-mouflage models are also scalar-tensor theories, but the additional scalar field is mass-
less and has a nonstandard kinetic term. This provides another simple example of modified-
gravity scenarios that includes an alternative screening mechanism. The f(R) theories give
rise to the chameleon screening mechanism [25, 26], where the additional scalar field obtains
a higher mass in high-density environments, which decreases the range of the fifth force and
screens compact objects. In contrast, the K-mouflage screening relies on a derivative screening
[27–29], due to the nonlinearity of the kinetic term, so that the fifth force is damped in regions
of large field gradients (or large Newtonian force), which gives rise to a K-mouflage radius
around compact objects within which one recovers General Relativity. On large linear scales,
from the point of view of the matter distribution, the main difference from the f(R) theories
is that the scalar field being massless there is no scale dependence for the linear growing
mode, as in the standard LCDM cosmology, but only a time-dependent amplification.

In contrast with the f(R) models, we cannot compare our results to numerical simu-
lations, which remain to be developed. However, on linear scales the K-mouflage scenarios
mostly differ from the LCDM cosmology by a time-dependent effective Newton constant,
without introducing new scales. Therefore, at a qualitative level, we can expect their large-
scale physics to remain even closer to the LCDM cosmology than for the f(R) theories, and
our modeling developed in the next sections should fare as well as for the f(R) theories.

The K-mouflage theories are characterised by the coupling of the scalar field to matter
βK and a Lagrangian kinetic function K(χ) that is nonlinear. This function must behave like
−1 when the kinetic energy of the scalar field is small in the late-time Universe, to play the
role of the cosmological constant. Moreover, it must also satisfy the stringent tests of gravity
in the Solar System, like the perihelion advance of the moon [30]. In this paper we take

K(0) = −1 and K ′(χ) = 1 +
K⋆χ2

χ2 + χ2
⋆
, (2.3)

– 3 –
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Background=LCDM,  perturbations slightly amplified. 

� = 1/
p
6

the Appendix for more details. The massm0 is given by the
useful relationship

m0 ¼
H0

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!m0 þ 4!"0

ðnþ 1ÞjfR0
j

s
(17)

with c=H0 % 4 Gpc. Modifications of gravity must satisfy
m0c=H0 * 103 to comply with a loosely screened
Milky Way [31]. This also corresponds to jfR0

j less than
10&5, the case jfR0j ¼ 10&4 being marginal. When m0 is
too large, effects of modified gravity on the large scale
structure occur on very nonlinear scales. In the following,
we will use values of m0 ' 1 Mpc&1, which satisfy the
loose screening bound for the Milky Way and imply inter-
esting effects on the large scale structure.

We can also deduce now the two parametric functions

!ðk; aÞ ¼
4
3

k2

m2
0
as þ 1

k2

m2
0
as þ 1

(18)

and

"ðk; aÞ ¼
4
3

k2

m2
0
as þ 1

2
3

k2

m2
0
as þ 1

; (19)

where

s ¼ 3nþ 4: (20)

We will use the parametrization of #ðk; aÞ in the following
when we give numerical examples. More precisely, we will
consider the four cases ðn;m0Þ ¼ ð0; 0:1Þ, (0, 1), (1, 0.1),
and (1, 1), where m0 is given in units of Mpc&1. This
corresponds to the two scales m0 ¼ 0:1 and 1 Mpc&1 and
to the two exponents n ¼ 0 and 1. For these models we
should have n > 0 [see Eq. (16)], and the choice n ¼ 0 for
our numerical computations is only meant to exemplify the
case of small n, that is, s ! 4. The scales we consider are
of the same order as the ones used so far in N-body
simulations where jfR0j ¼ 10&4, 10&5, 10&6 and n ¼ 1.
We will give a qualitative comparison with these numerical
results; especially we will briefly analyze the difference
between the full numerical simulations, the no-chameleon
case where the chameleon effects in the dense region is
neglected, and our resummation method in the Appendix.
There we analyze the fðRÞ models where we take into
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III. PERTURBATIVE DYNAMICS

A. Hydrodynamical perturbations

As explained in the previous section and in the
Introduction, we consider models where the continuity
and the Euler equations are only modified by the nontrivial
relationship between the two Newtonian potentials.
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which are the nonlinear generalizations of Eqs. (1) and (2),
with the parametrization (9). The kernels ' and ( are
given by
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ðk1 þ k2Þ + k1

k21
;

(ðk1;k2Þ ¼
jk1 þ k2j2ðk1 + k2Þ

2k21k
2
2

:

(23)

In this paper we are mostly interested in the recent
Universe on large scales; hence we do not distinguish
between the dark matter and the baryons that are treated
as usual as a single collisionless fluid. These equations are
only a first approximation of the dynamics of modified
gravity on subhorizon scales. Indeed, nonlinearities in the
potential and coupling function of the scalar field inducing
the modification of gravity imply that the full dynamics
should be described by the fluid equations for CDM parti-
cles and the Klein-Gordon equation for the scalar field.
Here we consider only the linear part of the scalar field
dynamics, which is tantamount to treating the scalar
field as massive with a linear coupling to matter. When
the mass of the scalar field is large enoughmðaÞ , H, this
allows one to integrate out the scalar dynamics and reduce
the equations of motion to the previous ones with a modi-
fied Newton constant. A priori, this procedure can be
carried out to all orders, taking into account the higher
derivatives of the scalar field potential and coupling func-
tion at the minimum of the effective potential describing
the background cosmology. Explicitly, this has been car-
ried out to the one-loop level in the scalar field perturba-
tion, resulting in an effective dynamics, once the scalar
field effects have been integrated out, with a modified
(ðk1;k2Þ [22]. The effect of this new contribution will
be taken into account in a forthcoming publication.
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Figure 5. Left panel: relative deviation from the LCDM prediction of the matter power spectrum
given by an f(R) theory with fR0

= −10−5, at redshift z = 3. We show the linear power spectrum (L)
and the truncated Zeldovich power spectrum (Ztrunc). Right panel: case of the K-mouflage model.
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Figure 6. Left panel: relative deviation from the LCDM prediction of the growth rate f given by
an f(R) theory with fR0

= −10−5, at redshift z = 3. Right panel: case of the K-mouflage model.

matter density perturbations but saturates beyond ktrunc ≃ 10h/Mpc, as it does not describe
the inner parts of collapsed halos. It mainly follows the standard Zeldovich approximation
up to its peak and remains constant at higher k. We can check that the result is not sensitive
to the exponent ν of the cutoff used for the truncation of the linear power spectrum.

Second, the cutoff e−(k/ks)2 corresponds to the damping of density fluctuations in the
gas by its nonzero pressure. We can see in the right panel in Fig. 4 the strong falloff at high-k
beyond the Jeans wave number ks ∼ 20h/Mpc. However, this is a relatively small-scale effect
and it does not impact the linear and weakly nonlinear growths of the IGM power spectrum.
The power spectrum PIGM(k) shown in the right panel in Fig. 4 corresponds to the density
field δs with the PDF P(δs) displayed in Fig. 1, which led to the flux PDF shown in Fig. 1.
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4.2 Matter power spectrum for modified-gravity theories

We show in Fig. 5 the relative deviations of the linear and truncated Zeldovich power spectra
from the LCDM prediction. The amplification of the growth of structure is due to the fifth
force mediated by the scalar field, and in the K-mouflage model also to the running of Newton’s
constant with redshift, which now depends on the background value of the scalar field.

For the f(R) theories, the relative deviation of PL(k) grows at higher k, because of the
mass of the scalar field which yields a characteristic scale dependence of the linear growing
mode. Moreover, at linear order there is no chameleon screening mechanism, which reduces
the deviation of the nonlinear power spectrum on small scales. The deviation of the truncated
Zeldovich power spectrum peaks at the nonlinear scale and decreases at higher k. This is due
to the universal flat plateau already shown in Fig. 4. In practice, this also means that we do
not need to include explicitly the nonlinear chameleon mechanism, as the deviation associated
with nonlinear scales is already damped. Because we take the same IGM temperature for all
cosmological scenarios, the relative deviation of the IGM power spectrum (4.1) coincides with
that of the truncated Zeldovich power spectrum.

In contrast, for the K-mouflage scenario where the vanishing scalar-field mass prevents
any scale dependence at linear order, the relative deviation of the linear matter power spec-
trum is independent of wave number. Then, the relative deviation of the truncated Zeldovich
power spectrum is constant at low k and decreases again at high k because of its universal
plateau.

We also show in Fig. 6 the relative deviations of the linear growth rate f(k, a)

f(k, a) =
∂ lnD+

∂ ln a
(k, a). (4.3)

As for the linear power spectrum, the relative deviation of the growth rate f(k, a) grows with
k for the f(R) theories, while it is scale independent for the K-mouflage model. For the latter
model, the magnitude of δP/P and δf/f are directly set by the coupling constant βK .

4.3 Lyman-α power spectrum PδF (k)

We assume that the Lyman-α flux-decrement power spectrum PδF (k, z) can be written in
terms of the IGM density power spectrum PIGM as

PδF (k, z) = b2δF(1 + βµ2)2 PIGM(k)/(1 + f |kµ|/kNL) e
−(kµ/kth)2 , (4.4)

where µ = k ·ez/k is the cosine of the wave number direction with respect to the line of sight,
bδF the bias, β the large-scale anisotropy parameter associated with redshift-space distortions,
and kth the thermal broadening cutoff wave number. The anisotropic µ-dependent terms arise
from redshift-space distortions, due to the amplification or damping of fluctuations measured
along the line of sight because of the radial velocity fluctuations. Indeed, the mapping from
real space x to redshift space s writes as

s = x+
v∥
aH

ez, (4.5)

where v∥ is the radial peculiar velocity. Then, the velocity dispersion at a given position x

redistributes the matter at x over a nonzero width along the radial redshift-space coordinate
s∥. This leads to a smoothing of real-space density fluctuations and a damping of the redshift-

space power spectrum at high k. The factor e−(kµ/kth)2 describes the smoothing by the termal
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structure for two K-mouflage models: the cubic and arctan
models. In Sec. V, we turn to galaxy clusters and their
properties, focusing on the physics of the gas embedded in
the clusters. In Sec. VI, we discuss in details the similarity
and differences between the K-mouflage scenarios and
other modified-gravity theories. We conclude in Sec. VII.
A derivation of the equations of motion in the Einstein

frame is given in Appendix A, while details on the Einstein–
Jordan connection can be found in Appendix B. We discuss
unitarity constraints in Appendix C.

II. DEFINITION OF K-MOUFLAGE MODELS

A. Jordan-frame and Einstein-frame metrics

We consider scalar-field models where the action has the
form [1,2]

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p "
~M2
Pl

2
~Rþ ~LφðφÞ

#

þ
Z

d4x
ffiffiffiffiffiffi−gp

Lmðψ
ðiÞ
m ; gμνÞ; ð1Þ

which involves two metrics, the Jordan-frame metric gμν,
with determinant g, and the Einstein-frame metric ~gμν, with
determinant ~g. The matter Lagrangian density, Lm, where
ψ ðiÞ
m are various matter fields, is given in the Jordan frame,

where it takes the usual form without explicit coupling to
the scalar field (although one could add explicit couplings
to build more complex models). The gravitational sector is
described by the usual Einstein–Hilbert action, but in terms
of the Einstein-frame metric ~gμν and the associated reduced

Planck mass ~MPl ¼ 1=
ffiffiffiffiffiffiffiffi
8π ~G

p
. The Lagrangian density

~LφðφÞ of the scalar field is also given in the Einstein frame.
Throughout this paper, we denote Einstein-frame quan-

tities with a tilde, to distinguish them from their Jordan-
frame counterparts (when they are not identical). We
choose this notation, which is the opposite to the one used
in our previous papers [7,8,11,12] where we mostly worked
in the Einstein frame, as here we mostly work in the
Jordan frame.
If the two metrics were identical, this model would be a

simple quintessence scenario [14,15], with an additional
scalar field to the usual matter and radiation components
but with standard electrodynamics and gravity (General
Relativity). In this paper, we consider modified-gravity
models where the two metrics are related by the conformal
transformation [16]

gμν ¼ A2ðφÞ~gμν: ð2Þ

This gives rise to an explicit coupling between matter
and the scalar field. In the Einstein frame, we recover
General Relativity (e.g., the Friedmann equations), but the
equations of motion of matter are nonstandard (e.g., the

continuity equation shows a source term, and matter
density is not conserved). In the Jordan frame, the equa-
tions of motion of matter take the usual form (e.g., matter
density is conserved), but gravity is modified (e.g., the
Friedmann equations are modified). In this paper, we
compute the properties of astrophysical objects such as
clusters of galaxies, including their temperature and x-ray
luminosity, and it is more convenient to work in the Jordan
frame. Then, radiative processes, such as bremsstrahlung,
are given by the standard results and do not vary with time
or space. Moreover, matter density is conserved. This
simplifies the analysis, as the only difference from a
Λ-CDM scenario will be a change of gravity laws, which
can be explicitly derived from the action (1).
The conformal transformation (2) actually means that

the line elements are transformed as ds2 ¼ A2d~s2. Using
conformal time τ and comoving coordinates x, this local
change of distance can be absorbed in the scale factor for
the background universe as

ds2 ¼ a2ð−dτ2 þ dx2Þ; d~s2 ¼ ~a2ð−dτ2 þ dx2Þ; ð3Þ

with

a ¼ Ā ~a; τ ¼ ~τ; x ¼ ~x: ð4Þ

[Throughout this paper, we denote with an overbar mean
background quantities, such as Ā ¼ Aðφ̄Þ.] However,
physical time t and distances r, with ds2 ¼ −dt2 þ dr2,
are changed as

dt ¼ Ād~t; r ¼ ax ¼ Ā ~r : ð5Þ

In particular, the cosmic times t and ~t are not the same in
both frames.

B. K-mouflage kinetic function

In this paper, we consider K-mouflage models [1,2,7],
which correspond to cases where the scalar-field Lagrangian
has a nonstandard kinetic term,

~LφðφÞ ¼ M4Kð~χÞ with ~χ ¼ −
1

2M4
~∇μφ ~∇μφ: ð6Þ

Throughout this paper, ~∇μð∇μÞ is the covariant derivative
associated with the metric ~gμνðgμνÞ (hence, χ ¼ A−2 ~χ, but we
work with ~χ in the following). Here, M4 is an energy scale
that is of the order of the current dark-energy density (i.e., set
by the cosmological constant) to recover the late-time
accelerated expansion of the Universe. Thus, the canonical
cosmological behavior, with a cosmological constant
~ρΛ ¼ M4, is recovered at late time in the weak-~χ limit if
we have

~χ → 0∶ Kð~χÞ≃ −1þ ~χ þ…; ð7Þ

BRAX, RIZZO, AND VALAGEAS PHYSICAL REVIEW D 92, 043519 (2015)

043519-2

structure for two K-mouflage models: the cubic and arctan
models. In Sec. V, we turn to galaxy clusters and their
properties, focusing on the physics of the gas embedded in
the clusters. In Sec. VI, we discuss in details the similarity
and differences between the K-mouflage scenarios and
other modified-gravity theories. We conclude in Sec. VII.
A derivation of the equations of motion in the Einstein

frame is given in Appendix A, while details on the Einstein–
Jordan connection can be found in Appendix B. We discuss
unitarity constraints in Appendix C.

II. DEFINITION OF K-MOUFLAGE MODELS

A. Jordan-frame and Einstein-frame metrics

We consider scalar-field models where the action has the
form [1,2]

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p "
~M2
Pl

2
~Rþ ~LφðφÞ

#

þ
Z

d4x
ffiffiffiffiffiffi−gp

Lmðψ
ðiÞ
m ; gμνÞ; ð1Þ

which involves two metrics, the Jordan-frame metric gμν,
with determinant g, and the Einstein-frame metric ~gμν, with
determinant ~g. The matter Lagrangian density, Lm, where
ψ ðiÞ
m are various matter fields, is given in the Jordan frame,

where it takes the usual form without explicit coupling to
the scalar field (although one could add explicit couplings
to build more complex models). The gravitational sector is
described by the usual Einstein–Hilbert action, but in terms
of the Einstein-frame metric ~gμν and the associated reduced

Planck mass ~MPl ¼ 1=
ffiffiffiffiffiffiffiffi
8π ~G

p
. The Lagrangian density

~LφðφÞ of the scalar field is also given in the Einstein frame.
Throughout this paper, we denote Einstein-frame quan-

tities with a tilde, to distinguish them from their Jordan-
frame counterparts (when they are not identical). We
choose this notation, which is the opposite to the one used
in our previous papers [7,8,11,12] where we mostly worked
in the Einstein frame, as here we mostly work in the
Jordan frame.
If the two metrics were identical, this model would be a

simple quintessence scenario [14,15], with an additional
scalar field to the usual matter and radiation components
but with standard electrodynamics and gravity (General
Relativity). In this paper, we consider modified-gravity
models where the two metrics are related by the conformal
transformation [16]

gμν ¼ A2ðφÞ~gμν: ð2Þ

This gives rise to an explicit coupling between matter
and the scalar field. In the Einstein frame, we recover
General Relativity (e.g., the Friedmann equations), but the
equations of motion of matter are nonstandard (e.g., the

continuity equation shows a source term, and matter
density is not conserved). In the Jordan frame, the equa-
tions of motion of matter take the usual form (e.g., matter
density is conserved), but gravity is modified (e.g., the
Friedmann equations are modified). In this paper, we
compute the properties of astrophysical objects such as
clusters of galaxies, including their temperature and x-ray
luminosity, and it is more convenient to work in the Jordan
frame. Then, radiative processes, such as bremsstrahlung,
are given by the standard results and do not vary with time
or space. Moreover, matter density is conserved. This
simplifies the analysis, as the only difference from a
Λ-CDM scenario will be a change of gravity laws, which
can be explicitly derived from the action (1).
The conformal transformation (2) actually means that

the line elements are transformed as ds2 ¼ A2d~s2. Using
conformal time τ and comoving coordinates x, this local
change of distance can be absorbed in the scale factor for
the background universe as

ds2 ¼ a2ð−dτ2 þ dx2Þ; d~s2 ¼ ~a2ð−dτ2 þ dx2Þ; ð3Þ

with
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that is of the order of the current dark-energy density (i.e., set
by the cosmological constant) to recover the late-time
accelerated expansion of the Universe. Thus, the canonical
cosmological behavior, with a cosmological constant
~ρΛ ¼ M4, is recovered at late time in the weak-~χ limit if
we have

~χ → 0∶ Kð~χÞ≃ −1þ ~χ þ…; ð7Þ
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structure for two K-mouflage models: the cubic and arctan
models. In Sec. V, we turn to galaxy clusters and their
properties, focusing on the physics of the gas embedded in
the clusters. In Sec. VI, we discuss in details the similarity
and differences between the K-mouflage scenarios and
other modified-gravity theories. We conclude in Sec. VII.
A derivation of the equations of motion in the Einstein

frame is given in Appendix A, while details on the Einstein–
Jordan connection can be found in Appendix B. We discuss
unitarity constraints in Appendix C.

II. DEFINITION OF K-MOUFLAGE MODELS

A. Jordan-frame and Einstein-frame metrics

We consider scalar-field models where the action has the
form [1,2]

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p "
~M2
Pl

2
~Rþ ~LφðφÞ

#

þ
Z

d4x
ffiffiffiffiffiffi−gp

Lmðψ
ðiÞ
m ; gμνÞ; ð1Þ

which involves two metrics, the Jordan-frame metric gμν,
with determinant g, and the Einstein-frame metric ~gμν, with
determinant ~g. The matter Lagrangian density, Lm, where
ψ ðiÞ
m are various matter fields, is given in the Jordan frame,

where it takes the usual form without explicit coupling to
the scalar field (although one could add explicit couplings
to build more complex models). The gravitational sector is
described by the usual Einstein–Hilbert action, but in terms
of the Einstein-frame metric ~gμν and the associated reduced

Planck mass ~MPl ¼ 1=
ffiffiffiffiffiffiffiffi
8π ~G

p
. The Lagrangian density

~LφðφÞ of the scalar field is also given in the Einstein frame.
Throughout this paper, we denote Einstein-frame quan-

tities with a tilde, to distinguish them from their Jordan-
frame counterparts (when they are not identical). We
choose this notation, which is the opposite to the one used
in our previous papers [7,8,11,12] where we mostly worked
in the Einstein frame, as here we mostly work in the
Jordan frame.
If the two metrics were identical, this model would be a

simple quintessence scenario [14,15], with an additional
scalar field to the usual matter and radiation components
but with standard electrodynamics and gravity (General
Relativity). In this paper, we consider modified-gravity
models where the two metrics are related by the conformal
transformation [16]

gμν ¼ A2ðφÞ~gμν: ð2Þ

This gives rise to an explicit coupling between matter
and the scalar field. In the Einstein frame, we recover
General Relativity (e.g., the Friedmann equations), but the
equations of motion of matter are nonstandard (e.g., the

continuity equation shows a source term, and matter
density is not conserved). In the Jordan frame, the equa-
tions of motion of matter take the usual form (e.g., matter
density is conserved), but gravity is modified (e.g., the
Friedmann equations are modified). In this paper, we
compute the properties of astrophysical objects such as
clusters of galaxies, including their temperature and x-ray
luminosity, and it is more convenient to work in the Jordan
frame. Then, radiative processes, such as bremsstrahlung,
are given by the standard results and do not vary with time
or space. Moreover, matter density is conserved. This
simplifies the analysis, as the only difference from a
Λ-CDM scenario will be a change of gravity laws, which
can be explicitly derived from the action (1).
The conformal transformation (2) actually means that

the line elements are transformed as ds2 ¼ A2d~s2. Using
conformal time τ and comoving coordinates x, this local
change of distance can be absorbed in the scale factor for
the background universe as

ds2 ¼ a2ð−dτ2 þ dx2Þ; d~s2 ¼ ~a2ð−dτ2 þ dx2Þ; ð3Þ

with

a ¼ Ā ~a; τ ¼ ~τ; x ¼ ~x: ð4Þ

[Throughout this paper, we denote with an overbar mean
background quantities, such as Ā ¼ Aðφ̄Þ.] However,
physical time t and distances r, with ds2 ¼ −dt2 þ dr2,
are changed as

dt ¼ Ād~t; r ¼ ax ¼ Ā ~r : ð5Þ

In particular, the cosmic times t and ~t are not the same in
both frames.

B. K-mouflage kinetic function

In this paper, we consider K-mouflage models [1,2,7],
which correspond to cases where the scalar-field Lagrangian
has a nonstandard kinetic term,

~LφðφÞ ¼ M4Kð~χÞ with ~χ ¼ −
1

2M4
~∇μφ ~∇μφ: ð6Þ

Throughout this paper, ~∇μð∇μÞ is the covariant derivative
associated with the metric ~gμνðgμνÞ (hence, χ ¼ A−2 ~χ, but we
work with ~χ in the following). Here, M4 is an energy scale
that is of the order of the current dark-energy density (i.e., set
by the cosmological constant) to recover the late-time
accelerated expansion of the Universe. Thus, the canonical
cosmological behavior, with a cosmological constant
~ρΛ ¼ M4, is recovered at late time in the weak-~χ limit if
we have

~χ → 0∶ Kð~χÞ≃ −1þ ~χ þ…; ð7Þ
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where the dots stand for higher-order terms, the zeroth-order
factor −1 corresponding to the late-time cosmological
constant M4. The normalization of the first two terms in
Eq. (7) defines the normalizations of the constantM4 and of
the field φ, and hence it does not entail any loss of generality
(within this class of models). We only consider models that
satisfy this low-~χ expansion in this article, and where ~̄χ → ∞
for ~t → 0 and ~̄χ → 0 for ~t → ∞.
Well-behaved K-mouflage scenarios have K0 > 0, where

we denote K0 ¼ dK=d~χ, and W"ðyÞ ¼ yK0ð"y2=2Þ must
be monotonically increasing functions up to þ∞ over
y ≥ 0. This ensures that the cosmological dynamics are
well defined up to arbitrarily high redshift, where the matter
density becomes increasingly large, and that small-scale
static solutions exist for any matter density profile [11].
Moreover, there are no ghosts around the cosmological
background nor small-scale instabilities [7].
We must point out that the kinetic functions Kð~χÞ that we

use for numerical computations and illustrative purposes in
this paper are defined by fully nonlinear expressions, namely
Eqs. (71) and (74) below, and as such go beyond the low-~χ
expansion (7). As explained above, the latter expansion is
very general and holds for well-behaved models, where
K0 > 0 for all ~χ and W"ðyÞ ¼ yK0ð"y2=2Þ are monoton-
ically increasing functions of y. The expansion (7) would
only be violated if K0 diverges at low ~χ, e.g.,
Kð~χÞ ¼ −1þ ~χ3=4 þ…, but we do not consider such
singular cases here.
Then, it happens that at at low redshifts, in the dark-

energy era, ~χ [with its normalization defined by the first two
coefficients in the expansion (7)] is small on cosmological
scales, which implies K0 ≃ 1. This holds both for the
homogeneous background and for the cosmological large-
scale structures. This property is related to the fact that at
low redshifts, in the dark-energy era, we require the
cosmological evolution to remain close to the Λ-CDM
behavior. From the expressions (17), we can see that this
implies ~̄χK̄0 ≪ K̄ (to recover a dark-energy equation of
state p̄de ≃ −ρ̄de) whence ~̄χ ≪ 1. In fact, at low z, we have
the scaling ~̄χ ∼ β2, where β is the coupling strength defined
in Eq. (9) below, so that ~̄χ ∼ 0.01 as we take β ¼ 0.1. We
shall check this behavior in Fig. 4 below.
We shall also check in Sec. V B and Fig. 13 below that

this also applies to clusters of galaxies at low redshifts,
which are not screened by the nonlinearities of the scalar-
field Lagrangian, in spite of their large mass. This would
not be the case for a coupling β ≫ 0.1, but this would
violate some Solar System and cosmological constraints,
and we do not consider such models here.
Nevertheless, the nonlinearities of the kinetic function

Kð~χÞ come into play at high redshift and are taken into
account in our computations, using the explicit nonlinear
examples (71) and (74). This ensures in particular that the
dark-energy density becomes subdominant at high z and
that we recover the Einstein–de Sitter cosmology in the

early matter era [7]. Moreover, the background solution can
be shown to be stable and is a tracker solution [7]. The
nonlinearities on the far negative semiaxis, −~χ ≫ 1, also
play a critical role to ensure that Solar System tests of
gravity are satisfied by the K-mouflage model, but we do
not consider this regime in this paper.
Although K-mouflage theories involve high-order

derivative interactions, they do not suffer from quantum-
mechanical problems such unitarity violation in their inter-
action with matter [17,18], as explained in Appendix C.

C. K-mouflage coupling function

The coupling function AðφÞ has the low-φ expansion

AðφÞ ¼ 1þ βφ
~MPl

þ…; ð8Þ

where the dots stand for higher-order terms. The normali-
zation of the first term does not entail any loss of generality
and only corresponds to a normalization of coordinates. At
early times, ~t → 0, we have φ̄ → 0 and gμν → ~gμν. More
generally, we define the coupling β as

βðφÞ ¼ ~MPl
d lnA
dφ

: ð9Þ

It is constant for exponential coupling functions,
AðφÞ ¼ exp½βφ= ~MPl'. Without loss of generality, we take
β > 0 (which simply defines the sign of the scalar field φ).
Cosmological and Solar System constraints imply

β ≲ 0.1; see Ref. [12]. Moreover, we have the scaling
jβφ̄= ~MPlj ∼ β2 ≪ 1, see Ref. [7], as we shall check in Fig. 4
below (see also Ref. [9]). Therefore, in realistic models, we
have jĀ − 1j≲ 0.1, and the higher-order terms in the
expansion (8) only have a small quantitative impact. We
shall also check in Fig. 13 below that the fluctuations of the
scalar field are small, jφ − φ̄j ≪ jφ̄j, so that the coupling
function AðφÞ remains dominated by the low-order terms of
the expansion (8) in clusters of galaxies (and at smaller
scales). This can be readily understood from the fact that
realistic models should have a fifth force that is not greater
than the standard Newtonian force. This typically implies
jδA=Aj≲ jΨNj, where ΨN is the Newtonian potential,
whence jβδφ= ~MPlj ≲ 10−5.

D. Equations of motion in the Einstein frame

Observable effects, such as lensing or two point corre-
lations that can be measured, are independent of the choice
of frame, so that we can work in either the Einstein or the
Jordan frame. As explained in the Introduction, for our
purposes, the Jordan frame is more convenient and more
transparent. Indeed, in this frame, both the matter and
radiation components obey their usual equations of
motion; e.g., the matter energy-momentum tensor satisfies
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coupling of matter to the scalar field:

nonlinear kinetic function (screening):

linear (unscreened) regime:

no potential zero mass long range, scale-independent

Relative deviation of the linear 
growth-rate from LCDM:

4.2 Matter power spectrum for modified-gravity theories

We show in Fig. 5 the relative deviations of the linear and truncated Zeldovich power spectra
from the LCDM prediction. The amplification of the growth of structure is due to the fifth
force mediated by the scalar field, and in the K-mouflage model also to the running of Newton’s
constant with redshift, which now depends on the background value of the scalar field.

For the f(R) theories, the relative deviation of PL(k) grows at higher k, because of the
mass of the scalar field which yields a characteristic scale dependence of the linear growing
mode. Moreover, at linear order there is no chameleon screening mechanism, which reduces
the deviation of the nonlinear power spectrum on small scales. The deviation of the truncated
Zeldovich power spectrum peaks at the nonlinear scale and decreases at higher k. This is due
to the universal flat plateau already shown in Fig. 4. In practice, this also means that we do
not need to include explicitly the nonlinear chameleon mechanism, as the deviation associated
with nonlinear scales is already damped. Because we take the same IGM temperature for all
cosmological scenarios, the relative deviation of the IGM power spectrum (4.1) coincides with
that of the truncated Zeldovich power spectrum.

In contrast, for the K-mouflage scenario where the vanishing scalar-field mass prevents
any scale dependence at linear order, the relative deviation of the linear matter power spec-
trum is independent of wave number. Then, the relative deviation of the truncated Zeldovich
power spectrum is constant at low k and decreases again at high k because of its universal
plateau.

We also show in Fig. 6 the relative deviations of the linear growth rate f(k, a)

f(k, a) =
∂ lnD+

∂ ln a
(k, a). (4.3)

As for the linear power spectrum, the relative deviation of the growth rate f(k, a) grows with
k for the f(R) theories, while it is scale independent for the K-mouflage model. For the latter
model, the magnitude of δP/P and δf/f are directly set by the coupling constant βK .

4.3 Lyman-α power spectrum PδF (k)

We assume that the Lyman-α flux-decrement power spectrum PδF (k, z) can be written in
terms of the IGM density power spectrum PIGM as

PδF (k, z) = b2δF(1 + βµ2)2 PIGM(k)/(1 + f |kµ|/kNL) e
−(kµ/kth)2 , (4.4)

where µ = k ·ez/k is the cosine of the wave number direction with respect to the line of sight,
bδF the bias, β the large-scale anisotropy parameter associated with redshift-space distortions,
and kth the thermal broadening cutoff wave number. The anisotropic µ-dependent terms arise
from redshift-space distortions, due to the amplification or damping of fluctuations measured
along the line of sight because of the radial velocity fluctuations. Indeed, the mapping from
real space x to redshift space s writes as

s = x+
v∥
aH

ez, (4.5)

where v∥ is the radial peculiar velocity. Then, the velocity dispersion at a given position x

redistributes the matter at x over a nonzero width along the radial redshift-space coordinate
s∥. This leads to a smoothing of real-space density fluctuations and a damping of the redshift-

space power spectrum at high k. The factor e−(kµ/kth)2 describes the smoothing by the termal
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Figure 5. Left panel: relative deviation from the LCDM prediction of the matter power spectrum
given by an f(R) theory with fR0

= −10−5, at redshift z = 3. We show the linear power spectrum (L)
and the truncated Zeldovich power spectrum (Ztrunc). Right panel: case of the K-mouflage model.
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Figure 6. Left panel: relative deviation from the LCDM prediction of the growth rate f given by
an f(R) theory with fR0

= −10−5, at redshift z = 3. Right panel: case of the K-mouflage model.

matter density perturbations but saturates beyond ktrunc ≃ 10h/Mpc, as it does not describe
the inner parts of collapsed halos. It mainly follows the standard Zeldovich approximation
up to its peak and remains constant at higher k. We can check that the result is not sensitive
to the exponent ν of the cutoff used for the truncation of the linear power spectrum.

Second, the cutoff e−(k/ks)2 corresponds to the damping of density fluctuations in the
gas by its nonzero pressure. We can see in the right panel in Fig. 4 the strong falloff at high-k
beyond the Jeans wave number ks ∼ 20h/Mpc. However, this is a relatively small-scale effect
and it does not impact the linear and weakly nonlinear growths of the IGM power spectrum.
The power spectrum PIGM(k) shown in the right panel in Fig. 4 corresponds to the density
field δs with the PDF P(δs) displayed in Fig. 1, which led to the flux PDF shown in Fig. 1.
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Both the background and the perturbations are slightly perturbed. 



II.  FLUX PROBABILITY DISTRIBUTION

Calura et al. (2012)

Lyman α flux PDF at z > 3 3023

Figure 3. An illustration of the uncertainty on the continuum placement for three of the spectra in our sample with different S/N values: S/N = 25 for
Q1209+0919 (upper panel), S/N = 68 for PKS 2000−330 (middle panel) and S/N = 150 for PKS 1937−101 (lower panel). In each panel, the final continuum
fit is shown by the solid curve, while the dotted and dashed curves show the fitted continuum after it is increased/decreased by 5 and 10 per cent, respectively.

The Lyman α forest includes the spectral region between the
wavelength of the Lyman β emission line, λβ = 1025.72 (1 +
zQSO), and the wavelength corresponding to the Lyman α emission
line, that is, λα = 1215.67 (1 + zQSO). To avoid contamination from
the QSO line-of-sight (LOS) proximity effect, in each spectrum
we excluded an interval of 4000 km s−1 bluewards of the Lyman α

emission line. All the absorption features were then identified and
fitted by means of the RDGEN,2 VPFIT3 and VPGUESS4 packages.

First, all the metal absorption lines redwards of the QSO Lyman α

emission peak were identified and fitted. This task does not present
significant difficulties, since the number of absorption lines in this
spectral region is relatively low and lines due to different transitions
are rarely blended. Secondly, the identification of heavy element
absorption in the Lyman α forest was performed. This task requires
more attention owing to the large amount of Lyman α lines in this
region and to the frequent presence of broad, saturated absorption
features. In this spectral region, isolated metal lines are very rare.
Most of the metal absorption lines are blended with Lyman α lines,

2 http://www.ast.cam.ac.uk/rfc/rdgen.html
3 http://www.ast.cam.ac.uk/rfc/vpfit.html
4 http://www.eso.org/jliske/vpguess/

complicating the precise identification of metal line profiles. A
common technique to search for metal absorption in the Lyman α

forest therefore employs the use of velocity width profiles. Once a
strong transition is identified at wavelengths redwards of the QSO
Lyman α emission line, for example, due to C IV or Si IV, associated
ionic transitions such as Si II, Si III and C II at the corresponding
redshift and velocity profile can be searched for in the Lyman α

forest.
When metal lines in the Lyman α forest are heavily blended

with H I absorption, it is generally difficult to identify the shape
of the profile. The parameters that are most difficult to recover in
this case are the Doppler parameter b and the column density N.
In these cases, as an initial guess for VPFIT we provide the profile
of the lines associated with the systems already identified redwards
of the QSO emission, usually satisfactorily fitted by VPFIT. VPFIT

then corrects the initial guess and modifies it in order to obtain
an improved fit to that spectral region. Once a stable solution is
obtained which is not sensitive to the initial guess and characterized
by a satisfactory reduced χ2 value (typically of the order of 1–3,
depending on the noise level of the spectrum), the fit process is
complete. An alternative way to identify metal absorption in the
forest is based on the value of the Doppler parameter, which is in
general narrower than for Lyman α lines (e.g. Tescari et al. 2011).
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Figure 10. The PDF measured in this work at ⟨z⟩ = 2.9 (squares and long-
dashed line) and ⟨z⟩ = 3.45 (circles and short-dashed line) compared with
the PDF obtained by K07 at ⟨z⟩ = 2.07 (light-grey curve), ⟨z⟩ = 2.52 (grey
curve) and ⟨z⟩ = 2.94 (dark-grey curve).

Figure 11. The PDF measured in this work in the lowest redshift bin
(squares and long-dashed curve) plotted with error bars compared to the
PDF obtained by K07 at ⟨z⟩ = 2.94 (dark grey curve).

analysed in this work into two redshift bins. In each bin we have
then calculated the effective optical depth. In Table 3, we show the
effective optical depth for our sample, computed both before and
after removing metal contamination. We have calculated τ eff by
considering the flux in the wavelength ranges reported in Table 3,
after removing a fraction of pixels as described in Section 2.2 in
order to avoid the proximity effect. Note also that since we wish
to measure the H I effective optical depth, removing metal lines is

Figure 12. The flux PDF measured by K07 at ⟨z⟩ = 2.94 (dark-grey curve)
plotted with error bars compared to the PDF measured from the two spectra in
our sample, Q0055−269 and PKS 2126−158, used in the K07 measurement
(open squares and long dashed curve). This comparison uses pixels in the
same wavelength range as adopted by K07.

again very important for obtaining a precise estimate of τ eff which
can be compared to other sets of data or with simulations.

The errors on τ eff are computed by means of a bootstrap method,
as described in McDonald et al. (2000), Schaye et al. (2003) and
K07. We have divided each spectrum into N chunks of 100 pixels,
corresponding to 5 Å. A total of 500 bootstrap realizations were then
performed by randomly selecting the N chunks with replacement.
The standard deviation from the mean τ eff is the error reported in
Table 3. In the last column of Table 3, we also give the percent-
age contribution of metal absorption lines to τ eff , which can be
calculated as

metals (per cent) =
(

τeff,H I+Z

τeff
− 1

)
× 100. (4)

The metal contamination varies from 1 to 28 per cent; we will
discuss its redshift dependence in more detail later on in this section.

In Fig. 13, we show the evolution of Lyman α forest optical
depth, τ eff , measured in this work after the removal of metal lines,
compared to previous estimates by various authors. The dotted line
is the best fit obtained by Faucher-Giguère et al. (2008) from a
sample of 86 high-resolution, high-S/N ESI and HIRES quasar
spectra. These authors also find evidence for a deviation of τ eff

from a power law at z ∼ 3.2, consistent with the previous result
of Bernardi et al. (2003) obtained using SDSS data and a different
methodology (see also Pâris et al. 2011). The solid line is our best
fit to all of the data (i.e. those of Schaye et al. 2003; K07; and this
work) obtained by means of the relation

τeff = A(1 + z)B + C exp
{

− [(1 + z) − D]2

2E2

}
, (5)

which is a modified power law including a Gaussian component to
take into account the presence of a deviation, as in Faucher-Giguère
et al. (2008). In comparison, the dashed line represents the best
fit to the whole data ensemble for a power law only. The reduced
χ2 are reported in Fig. 13; we find that a power law provides a
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5 A NA LY SIS O F THE SIMULATIONS

5.1 Synthetic spectra and PDFs

Given the positions, velocities, densities and temperatures of all the
SPH particles at a given redshift, spectra along LOSs through the
simulation boxes were computed following the procedure described
by Theuns et al. (1998). The interested reader can find more details
about this procedure in Section 5 of Tescari et al. (2011). Two
different sets of synthetic spectra were constructed: the first set
includes two redshift bins at z = 2.95 and 3.48 and the second
set includes three redshift bins at z = 2.90, 3.25 and 3.55. After
extracting the spectra along random LOSs through the cosmological
box at redshift z, we rescaled all the H I optical depths by a constant
factor, so that their mean value was equal to the H I effective optical

depth, τ eff , given by the K07 fit

τeff = (0.0023 ± 0.0007)(1 + z)3.65±0.21. (6)

This rescaling ensures that our spectra match the observed mean
normalized flux of the Lyman α forest at the appropriate redshift:
⟨F ⟩H I,OBS = exp(−τeff ). The spectra are then convolved with a Gaus-
sian of 7 km s−1 FWHM and rebinned on to pixels of width 0.05 Å.
Finally, in order to have realistic spectra to compare with observa-
tions, we add Gaussian distributed noise with total S/N per pixel
(i.e. standard deviation of the Gaussian at F = 1) equal to 60 and
readout S/N equal to 100.

The dependence of the simulated flux PDF on T0, γ and σ 8 is
illustrated in Fig. 15. The two upper panels show the PDFs extracted
from our two fiducial simulations: the high-resolution run A1REF

(black solid curve) and the low-resolution run B1REF (red dashed

Figure 15. Simulated PDFs at redshift z = 2.95 (left-hand side) and z = 3.48 (right-hand side). Upper two panels: our two reference simulations are displayed
in both plots: run A1REF (black solid curves) and run B1REF (red dashed curves). The black data points show the PDF measured from the full observational
sample after the removal of metals and LLSs (Table 2, last two columns). The blue dot–dashed curves and orange triple-dot–dashed curves are the PDFs
obtained with ±1.5 per cent (left-hand side) and ±3 per cent (right-hand side) continuum errors added to the spectra from runs A1REF and B1REF, respectively.
The two vertical dotted lines mark the region inside which we perform the fit to the observational data in this work. Lower six panels: the ratio between PDFs
obtained from simulations with different values of astrophysical and cosmological parameters, and the corresponding reference PDFREF. Variations in the
following parameters are explored: T0 (first row), γ (second row) and σ 8 (third row).
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Equilibrium between photo-ionisation and recombination:
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744 P. Valageas et al.: The phase-diagram of cosmological baryons

which describes the transition to non-linear scales (which
lie at T ≪ Tnl(ρ)). This is shown by the straight dashed-
line (Tnl ∝ ρ) plotted in Fig. 1. Besides, we note that
known sources of external heating (e.g., the UV back-
ground radiation) cannot heat the IGM up to such high
temperatures. Therefore, no fluid element can be located
in the region to the upper-left of the curve Tnl(ρ) since
no physical process which is active on these large scales
can heat the gas to these high temperatures. This yields
a third exclusion region.

2.2.4. Low-density fluctuations

Finally, a fourth constraint on the distribution of matter
is given by the low-density cutoff of the pdf P(ρR) of the
dark matter density field. This is the analog of the high-
density cutoff discussed in Sect. 2.2.2. The low-density
cutoff ρ−(R) is derived in Appendix A, from Eq. (A.8).
It obeys the asymptotic behaviours (A.11). In the quasi-
linear regime we again recover the usual Gaussian cut-
off δ− ∼ −σ. In the highly non-linear regime the small
overdensity ρ− ∼ ξ

−κ/2 ≪ 1 expresses the formation
of extreme underdensities on small scales. Contrary to
the high-density cutoff it is somewhat model-dependent
through the exponent κ but this has no strong effect on
the (ρ, T ) phase-diagram (we typically have κ ∼ 0.8). As
in Sect. 2.2.2 we need a relation T (R) in order to derive
a condition of the form ρ−(T ). We again consider both
cases of local and external heating, described by Eqs. (1)
and (2). This yields the curves ρ−,loc(T ) and ρ−,ext(T )
shown by the two steep parallel dashed-lines in Fig. 1, at
ρR ∼ 10−1. The curve associated with external heating is
the left one (i.e. lower densities or higher temperature),
as can be seen from Eqs. (1) and (2). Thus, this defines a
fourth exclusion region to the left of these curves.

2.3. Equation of State of the Lyman-α forest

Thus, so far we have obtained constraints on the distribu-
tion of matter in the (ρ, T ) plane by drawing four exclu-
sion regions. This already gives quite useful information
about the properties of the IGM which are very robust.
Now, we investigate a different point, seeking the location
of the gas in the (ρ, T ) plane. This amounts to deriving
an equation of State for this component.

As shown in Hui & Gnedin (1997) the low-density
photo-ionized IGM exhibits such an equation of State as
the gas follows a specific relation Tα(ρ) with a rather small
scatter. This was derived in Hui & Gnedin (1997) from the
Zel’dovich approximation (Zel’dovich 1970) which applies
up to the moderately non-linear regime (ξ <∼ 1). Here we
reconsider this problem and we show that this Equation
of State is rather robust with respect to the past his-
tory of the gas and applies independently of the validity
of the Zel’dovich approximation. First, we assume photo-
ionization equilibrium (we restrict ourselves to z <∼ 5 after

reionization) and we only take into account hydrogen.
Therefore, the ionization equilibrium reads:

Γ nHI = α(T ) nHIIne, (8)

where Γ is the photo-ionization rate and α(T ) is the re-
combination rate. They are given by:

Γ =
∫

4πJνσHI
dν

hν
= 3.08× 10−12 J21(z) s−1 (9)

and:

α(T ) = αJ

(
T

TJ

)−(ν−1)

, (10)

where we defined:

ν =1.7, αJ = 1.23×10−13 cm3 s−1, TJ = 5.8×104 K. (11)

The temperature TJ we introduced in Eq. (11) is the char-
acteristic temperature reached by the gas through the
heating due to the UV background radiation flux. It is
given by:

kTJ ≡
∫

4πJνσHI(hν − hνHI)dν
hν∫

4πJνσHI
dν
hν

(≃5 eV), (12)

where hνHI = 13.6 eV is the hydrogen ionization thresh-
old. Note that this temperature TJ does not depend on the
amplitude J21 of the UV background. Moreover, it is fixed
by atomic physics, independently of cosmological param-
eters. Next, the temperature T of a given fluid element
evolves as:
1
T

dT

dt
=

2
3

1
ρ

dρ

dt
+

1
theat

(13)

where d/dt is the Lagrangian time derivative. The heating
time theat is given by:

3/2nbkT

theat
=

∫
4πJνσHInHI(hν − hνHI)

dν

hν
= kTJnHIΓ, (14)

where we take nb = 2ρb/mp since we approximate the gas
as fully ionized hydrogen. The evolution Eq. (13) is the
same as Eq. (3), except that we neglect cooling (which
is justified here since we consider here moderate densities
and temperatures) and gravitational shock-heating which
is irrelevant. On the other hand, the term dρ/dt represents
the pressure work, which takes into account the expansion
of the fluid element. Substituting Eq. (14) into Eq. (13)
we obtain:

1
T

dT

dt
=

2
3

1
ρ

dρ

dt
+

1
t10

ρ

ρJ

(
T

TJ

)−ν

, (15)

where we define:

ρJ = 3
Ωm

Ωb

mp

αJt10
≃ 1.1× 10−28 g cm−3 (16)

and:

t10 = 1010 years. (17)
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Figure 2. Evolution Of/RI (solid line), JReI (dashed line) and JRen 

(dotted line) as a function of redshift, used in the computations 
shown in Fig. 1. The Jis are defined in equation (5). 

(j ;55. It gives the correct mean behaviour of gas elements in 
the full hydrodynamic simulation in the low-density regime. 
The larger scatter in Fig. l(a) compared with l(b) is in part 
because of the smaller number of fluid elements in the 
latter. At higher densities, one begins to see the effect of 
shocks: a wide scatter of temperature at a fixed density. The 
calculation shown in Fig. l(b) is not reliable in this regime. 
This is because by assuming that density evolves as pre-
scribed by the Zel'dovich approximation, which is only a 
good approximation for pressureless (dark) matter or bar-
yons at large scales, one misses the effects of gas pressure 
and shocks as the fluid element is compressed to sufficiently 
high densities. Note also that the temperature of gas ele-
ments at a high density tends to be higher in the approxi-
mate semi-analytical calculation compared to the full 
hydrodynamic computation. This might seem counter-intui-
tive since shock heating is properly taken into account in the 
latter but not the former. There are two reasons. First, 
because of the small box size of the hydrodynamic computa-
tion, large-scale power and, hence, shock heating is 
suppressed in Fig. l(a). Secondly, the Zel'dovich approxi-
mation breaks down beyond shell crossing, and so in Fig. 
l(b), we include only those elements that have not shell 
crossed. This means that at a given final high density, an 
element in Fig. l(b) should be just about to shell cross while 
a typical element in Fig. l(a) has probably done so already 
and is expanding, allowing for more cooling. Both of the 
above effects explain the relatively low temperature at a 
high density of the hydrodynamic simulation compared to 
our approximate semi-analytical calculation. We are, of 
course, interested in only the temperature-density relation 
in the low-density regions «(j;5 5), where the two methods 
agree very well. 

We have made a number of similar comparisons between 
the temperature-density relations obtained from hydro-

© 1997 RAS, MNRAS 292, 27-42 

Equation of state of the 10M 31 

g 104 
.......... 

0.1 1 
1+6 

10 0.1 1 
1+6 

10 

Figure 3. The temperature-density relation for 4 different sud-
den-reionization models: sudden reionization (see equation 6) at 
z=5 (a),z=7 (b), z=lO (c) andz=10 (d). For each reionization 
model, the black dots shown are the results of calculations using 
the semi-analytical method outlined in Section 2.1 for 2000 ele-
ments, shown at three different instants: z being 4, 3 and 2 from top 
to bottom. The cosmological parameters are h = 0.5, no = 1 and 
nbh2 =0.0125 (with primordial abundances for hydrogen and 
helium). The ionizing background is specified by its amplitude 
JRI =0.5 (equation 5) and spectrum obeying equation (7) with 
/=0.01. The solid, dotted and dashed lines, from top to bottom for 
each reionization model, represent the analytical expressions for 
the equation of state in equations (13), (19) and (22), using the 
corresponding cosmological parameters and reionization-epoch 
for each model. The only exception is panel (d) where the lines 
shown are exactly the same as those in the panel (c), i.e. setting 
a,eion = 1/11 in equations (19) and (22) (see explanation in the 
text). 

dynamic simulations versus using our semi-analytical 
method, for a number of different J,s as a function of time. 
The semi-analytical method consistently gives the correct 
mean behaviour of gas elements oflow density. Keeping in 
mind the intrinsic scatter such as that seen in Fig. l(a), we 
can make use of our simple semi-analytical method to effi-
ciently study the mean temperature-density relation at the 
low-density regime for a large number of reionization 
scenarios, which is the subject of the next two sections. 

3 SUDDEN REIONIZATION MODELS 
3.1 Variation with the epoch of reionization 
In Fig. 3 we show the temperature-density relation for four 
different sudden reionization models, where the reioniza-
tion epoch is systematically varied. All of them have no 
ionizing background until the specified epoch and then JHI 

(equation 5) is taken to be 0.5 thereafter, i.e. 

J = {Jion 
HI 0 

for a 
for a < areion> 

(6) 
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Figure 10. Temperature-density diagrams at various redshift. Color represents the particle density in loga-
rithmic scale. The black line represents the fitted T � ⇢ relation from several mode-estimated points. � is the
normalized density ⇢/ h⇢i.

From the 1D power-spectra that we computed at each point of the grid, we derived a second-
order Taylor expansion around our best-guess model. It describes the evolution of the 1D power
spectrum with changes in either the cosmological or the astrophysical parameters that we studied.
We have performed several check runs to ensure the quality and validity of our simulation grid,
using either di↵erent seeds, or o↵-the-grid values of the cosmological and astrophysical parameters.
These checks were all consistent with the power spectrum predicted using our second-order Taylor
expansion, thus validating it. We compared our central simulation to published data from BOSS and
showed that they were already in good agreement without any adjustment of any of the simulation
parameters. In forthcoming work, we will use this Taylor expansion for a quantitative comparison to
data in order to extract best-fit cosmological parameters.

These simulations are accompanied by a set of simulations where massive neutrinos are in-
cluded. These required additional developments for an e�cient treatment and a proper account of
the additional particles (at all levels of the pipeline: in CAMB, in the setup of the initial conditions
for thermal velocities, in Gadget-3, etc.), but are otherwise produced with a pipeline similar to the
one presented in this study. The details about the simulations with massive neutrinos can be found in
the companion paper [70]. Additional parameters can yet be included in the same context. However,
due to the presence of the cross terms that are necessary for an accurate modeling of the likelihood
function that illustrates the variation of the power spectrum in all directions of this growing parameter-
space, adding new parameters will become more and more expensive in terms of calculation time.

– 23 –

Borde et al. (2014)

⌧ / nHI / (1 + �)2T�0.7



where χ = −(∂φ)2/2M4, and M4 is the dark energy scale. The first derivative K ′(χ) goes
from 1 at low χ, as for the standard kinetic term, to the large value K⋆ at high χ, which gives
rise to the screening mechanism that damps the scalar field gradients and the fifth force in
high-density environments. We choose to illustrate our results with χ⋆ = 100 and K⋆ = 1000.
We consider the case of a coupling constant βK = 0.1 (the f(R) theories correspond to
βf = 1/

√
6), to remain consistent with constraints from Big Bang Nucleosynthesis and the

Solar System. In practice, this gives K̄ ′ ≃ 1 for the background for z ! 6, so that the precise
form of K(χ) does not play any role and our results are set by the value of the coupling βK .
Indeed, in this model clusters of galaxies are still in the unscreened linear regime of the scalar
field [13] and this is even more so for the Lyman-α forest clouds.

3 Flux probability distribution function

3.1 Modeling P(F )

The first statistics we consider in this paper is the probability distribution function P(F )
of the Lyman-α flux F . In the standard fluctuating Gunn-Peterson approximation [20, 31],
the Lyman-α optical depth is proportional to the neutral hydrogen density nHI. For a gas in
photoionization equilibrium this is proportional to the density multiplied by a recombination
rate, and for temperatures T ∼ 104 K this gives

τ ∝ ρ2T−0.7 ∝ (1 + δ)α with α = 2− 0.7(γ − 1), (3.1)

where (γ − 1) is the exponent of the gas density-temperature relation. This gives for the
Lyman-α flux

F = e−τ = e−A(1+δ)α . (3.2)

The factor A depends on the HI photoionization rate, which is difficult to measure indepen-
dently. Following standard practice, we set A by requiring that the mean flux ⟨F ⟩ matches
the observational measurements. The exponent γ is typically γ ≃ 1 − 1.6 and goes to 1.6
at late times in the case of early reionization [32]. Following observations and numerical
simulations [33], we take γ = 1.3 and T = 2 × 104 K at z = 3, which gives α = 1.79. To
relate the Lyman-α flux to the matter distribution through Eq.(3.2), we need to speficy the
smoothing scale xF of the density contrast. As in [34, 35], we write the comoving smoothing
wave number ks in terms of the Jeans wave number kJ as

ks = 2.2 kJ with kJ =
a

cs

√

4πGNρ̄, cs =

√

5kBT

3µmp
, (3.3)

where a is the scale factor, cs the sound speed, and µ ≃ 0.5 the mean molecular weight.
The factor 2.2 accounts for the fact that the Jeans length was smaller at earlier times, which
reduces the damping scale at a given redshift [34], and we take xs = π/ks for the smoothing
radius. Then, neglecting the scatter of the density-flux relation (3.2), we write the flux PDF
as

P(F ) = P(δs)

∣

∣

∣

∣

dδs
dF

∣

∣

∣

∣

. (3.4)

We define the density probability distribution function P(δs) through its normalized gener-
ating function ϕs(y),

P(δs) =

∫ i∞

−i∞

dy

2πiσ2
s
e[yδs−ϕs(y)]/σ2

s with ϕs(y) = −
∞
∑

n=2

(−y)2

n!

⟨δns ⟩c
σ2(n−1)
s

, (3.5)
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The factor 2.2 accounts for the fact that the Jeans length was smaller at earlier times, which
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Factor A related to the photo-ionizing flux. In practice, it is set by the matching
with data of the mean flux: hF i
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radius. Then, neglecting the scatter of the density-flux relation (3.2), we write the flux PDF
as

P(F ) = P(δs)

∣

∣

∣

∣

dδs
dF

∣

∣

∣

∣

. (3.4)

We define the density probability distribution function P(δs) through its normalized gener-
ating function ϕs(y),

P(δs) =

∫ i∞

−i∞

dy

2πiσ2
s
e[yδs−ϕs(y)]/σ2

s with ϕs(y) = −
∞
∑

n=2

(−y)2

n!

⟨δns ⟩c
σ2(n−1)
s

, (3.5)
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Figure 2. Left panel: relative deviation of the PDF P(δs) for the f(R) models. Right panel: case
of the K-mouflage model.
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black dot-dashed lines are the ±1σ relative errors of the observational results of [38]. Right panel:
relative deviation of the PDF P(F ) for the K-mouflage model (blue solid line), with the ±1σ relative
observational errors of [38].

to unity. We recover this behavior in Fig. 2. We find that for the modified-gravity scenarios
that we consider in this paper P(δs) only deviates by a few percents for typical IGM density
contrasts.

We show in Fig. 3 the relative deviation of P(F ) for the f(R) theories and the K-
mouflage model. As in the numerical simulations [14], in all cases we set the coefficient A in
Eq.(3.2) so that the mean flux matches the observed value of [38], ⟨F ⟩ = 0.72. As for the
density PDF shown in Fig. 2, the amplification of structure formation in the modified-gravity
scenarios leads to stronger tails for P(F ), and therefore to a lower amplitude of the PDF
at the moderate values around ⟨F ⟩. For the f(R) theories we roughly recover the order of
magnitude and the shape of the deviation found in the numerical simulations [14]. As the
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Figure 1. Left panel: probability distribution function P(δs) from (3.5) (red solid line labeled
“ϕs”). We also display the Gaussian PDF from linear theory (blue dotted line “L”) and a lognormal
approximation (green dashed line “ln”). Right panel: Probability distribution function P(F ) from
(3.4). The data points are the observational results of [38].

and we take for the latter its value derived in the rare-event or low-variance limit, see [36, 37].
On the other hand, to be consistent with the approach we use for the Lyman-α power spec-
trum, we compute the smoothed variance σ2

s from the truncated Zeldovich power spectrum
defined in Eq.(4.2) below. This means that δs is the IGM density field associated with the
IGM power spectrum (4.1). It differs from the underlying nonlinear matter distribution by
the smoothing scale xs and by the use of the truncated Zeldovich approximation, which pro-
vides a reasonable description of the large-scale weakly nonlinear matter distribution while
removing the irrelevant contributions from high-density virialized halos that do not contribute
to the Lyman-α forest.

We compare in the left panel in Fig. 1 the PDF (3.5) with the Gaussian PDF from linear
theory and the lognormal approximation. We can see that on these mildly nonlinear scales,
the density fluctuations of the IGM are modest but the PDF already significantly deviates
from the Gaussian, with a peak at a slightly negative density contrast and an extended high-
density tail. As is well known, this shape is similar to the usual lognormal approximation.

Next, the mapping (3.2) provides the flux PDF through eq.(3.4). We can see in the right
panel in Fig. 1 that this gives a reasonably good agreement with the observations from [38].

3.2 P(δs) and P(F ) for modified-gravity theories

We show in Fig. 2 the relative deviation of the PDF (3.4) from the LCDM prediction for
the f(R) theories and the K-mouflage model. Here, we keep the same generating function
ϕs and only take into account the dependence of the variance σ2

s on the modified-gravity
scenario. This should be sufficient for our purposes as we consider scenarios that remain
close to General Relativity and the Lyman-α forest probes moderate density fluctuations
that should be mostly governed by the variance σ2

s . The modified-gravity scenarios studied
in this paper amplify the growth of density perturbations at low redshifts. This increases
the variance σ2

s and makes structure formation appear further advanced than in the LCDM
cosmology. This leads to stronger tails for the PDF P(δs), as large fluctuations are less rare,
and hence to lower values of P(δs) for moderate contrasts δs ≃ 0 as all PDF are normalized
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III.  IGM power spectrum

K-mouflage model is closer to the LCDM cosmology, in the sense that the linear growth rate
does not depend on wave number and outside of galaxies the modification of gravity only
corresponds to a small time dependence of Newton’s constant, we can expect our modeling
of P(F ) to fare at least as well for this scenario. However, for the f(R) theories we can see
that we underestimate the negative deviation at F ≃ 0.8 by a factor 2. This could be due
in parts to the neglect of redshift-space effects. However, since the deviations are typically
smaller than the 1σ errorbars of the observations, we do not try to extend our modeling of
P(F ) to redshift-space. Indeed, the small amplitude of δP/P means that the Lyman-α flux
PDF is not a competitive probe of modified-gravity models.

4 Lyman-α flux decrement power spectrum

Fitting formulas for the power spectrum PδF (k) of the Lyman-α forest flux decrement δF are
usually written in terms of the power spectrum PL(k) of the linear matter density contrast at
the same redshift, multiplied by several cutoffs and amplification factors [19, 39]. These factors
account for several effects, such as the bias between the neutral hydrogen gas distribution and
the total matter distribution, thermal broadening, redshift-space distortions, the nonlinear
growth of density fluctuations,..., and are obtained from fits to numerical simulations. In this
paper, we also use such cutoffs, which we do not accurately predict but have realistic orders of
magnitude and are fitted to simulations and observations. However, we do not introduce an
ad-hoc amplification factor and we model the effects associated with the nonlinearity of the
underlying density field by an analytical model based on a truncated Zeldovich approximation.
This scheme cannot reach the accuracy of dedicated hydrodynamical numerical simulations,
but we can hope that it captures some of the dependence on the primordial matter power
spectrum and the growth of large-scale density perturbations.

4.1 IGM power spectrum PIGM(k)

As in section 3 and Eq.(3.2) for the flux PDF, we follow the common description of the Lyman-
α forest as due to fluctuations in a continuous intergalactic medium (IGM) [40–42] instead of
a set of discrete objects. Thus, we first express the real-space IGM density power spectrum
of the neutral hydrogen gas in terms of the primordial matter density power spectrum as

PIGM(k) = PZtrunc(k) e
−(k/ks)2 , (4.1)

where PZtrunc(k) is a truncated Zeldovich power spectrum [43–45] and ks is the smoothing
wave number introduced in Eq.(3.3). We define this truncated Zeldovich power spectrum
as the standard Zeldovich power spectrum PZ(k) associated with a truncated linear power
spectrum PLtrunc(k), instead of the genuine primordial linear power spectrum PL(k),

PZtrunc = max
ktrunc

PZ[PLtrunc] with PLtrunc(k) = PL(k)/(1 + k2/k2trunc)
2. (4.2)

An alternative approach would be to use a lognormal model for the IGM density field, written
as δIGM ∝ eδL , and to use simulations to obtain the statistical properties of this lognormal
field [40]. The advantage of our approach (4.1) is that it directly provides the power spectrum,
without the need of numerical simulations.

It has been noticed for a long time that using a truncated linear power spectrum instead
of the full linear power spectrum in the Zeldovich mapping provides a better description of
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Figure 4. Left panel: logarithmic power ∆2(k) for the linear power spectrum (L), a nonlinear model
(NL), the standard Zeldovich approximation (Z), and two truncated linear power spectra (Ltrunc)
and their associated Zeldovich approximations (Ztrunc). Right panel: the IGM model (4.1).

large-scale structures; it actually fares better than both the linear and lognormal approxi-
mations [46]. Indeed, the initial power at high wavenumbers gives rise to artificially large
displacements in the Zeldovich mapping, where particles simply follow their linear trajecto-
ries. This leads to particles moving beyond collapsed structures, instead of turning back and
oscillating in gravitational potential wells, which gives rise to a steep free-streaming cutoff of
the predicted nonlinear power spectrum, instead of the actual amplification associated with
the collapse into virialized halos. Then, truncating the initial power at high k reduces this
effect and enables one to recover the structure of the cosmic web [46]. Of course, such a
scheme cannot describe the inner parts of the virialized halos. However, this is well suited to
our purposes. Indeed, Lyman-α forest clouds consist of mildly nonlinear density fluctuations,
typically associated with filaments or the outer parts of collapsed structures. Therefore, re-
moving high-density collapsed regions is actually required to focus on the Lyman-α forest.
Moreover, the maximization in Eq.(4.2) implies that the truncation wave number ktrunc that
determines PLtrunc is defined as the one that maximizes k3PZtrunc(k) at high k. Indeed, for
large ktrunc, i.e. ktrunc ≫ kNL where kNL is the nonlinear transition scale with ∆2

L(k) ∼ 1
(∆2 = 4πk3P is the logarithmic power that also measures the variance of density fluctuations
at scale 1/k), we recover the primordial linear power spectrum and the artificial smoothing
of nonlinear structures. For small ktrunc, i.e. ktrunc ≪ kNL, we already remove power in the
linear regime and prevent the formation of mildly nonlinear structures. For ktrunc ∼ kNL,
we maximize the resulting Zeldovich power spectrum PZtrunc, which shows a universal tail
PZtrunc(k) ∝ k−3, i.e. a flat ∆2

Ztrunc(k) at high k. This captures the self-induced truncation of
the mildly nonlinear density power spectrum we consider; the truncation is associated with
the removal of high-density virialized regions, the formation of which is set by the onset of the
nonlinear regime. This natural prescription also avoids introducing an additional free param-
eter ktrunc. This also ensures that the resulting power spectrum PZtrunc is not very sensitive
to the form of the cutoff 1/(1 + k2/k2trunc)

ν , where we could as well take ν = 1 or 4. Thus,
we show in the left panel in Fig. 4 the power spectra obtained without truncation and with
truncation, either with ν = 2 (crosses) or ν = 4 (squares). We can see that at redshift z = 3
the truncated Zeldovich approximation captures some of the nonlinear amplification of the
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Recovers the large-scale cosmic web, associated with moderate density fluctuations. 
Highly nonlinear virialized halos do not contribute to the Lyman-alpha forest.
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and the truncated Zeldovich power spectrum (Ztrunc). Right panel: case of the K-mouflage model.
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matter density perturbations but saturates beyond ktrunc ≃ 10h/Mpc, as it does not describe
the inner parts of collapsed halos. It mainly follows the standard Zeldovich approximation
up to its peak and remains constant at higher k. We can check that the result is not sensitive
to the exponent ν of the cutoff used for the truncation of the linear power spectrum.

Second, the cutoff e−(k/ks)2 corresponds to the damping of density fluctuations in the
gas by its nonzero pressure. We can see in the right panel in Fig. 4 the strong falloff at high-k
beyond the Jeans wave number ks ∼ 20h/Mpc. However, this is a relatively small-scale effect
and it does not impact the linear and weakly nonlinear growths of the IGM power spectrum.
The power spectrum PIGM(k) shown in the right panel in Fig. 4 corresponds to the density
field δs with the PDF P(δs) displayed in Fig. 1, which led to the flux PDF shown in Fig. 1.
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IV.  Lyman-alpha power spectrum

4.2 Matter power spectrum for modified-gravity theories

We show in Fig. 5 the relative deviations of the linear and truncated Zeldovich power spectra
from the LCDM prediction. The amplification of the growth of structure is due to the fifth
force mediated by the scalar field, and in the K-mouflage model also to the running of Newton’s
constant with redshift, which now depends on the background value of the scalar field.

For the f(R) theories, the relative deviation of PL(k) grows at higher k, because of the
mass of the scalar field which yields a characteristic scale dependence of the linear growing
mode. Moreover, at linear order there is no chameleon screening mechanism, which reduces
the deviation of the nonlinear power spectrum on small scales. The deviation of the truncated
Zeldovich power spectrum peaks at the nonlinear scale and decreases at higher k. This is due
to the universal flat plateau already shown in Fig. 4. In practice, this also means that we do
not need to include explicitly the nonlinear chameleon mechanism, as the deviation associated
with nonlinear scales is already damped. Because we take the same IGM temperature for all
cosmological scenarios, the relative deviation of the IGM power spectrum (4.1) coincides with
that of the truncated Zeldovich power spectrum.

In contrast, for the K-mouflage scenario where the vanishing scalar-field mass prevents
any scale dependence at linear order, the relative deviation of the linear matter power spec-
trum is independent of wave number. Then, the relative deviation of the truncated Zeldovich
power spectrum is constant at low k and decreases again at high k because of its universal
plateau.

We also show in Fig. 6 the relative deviations of the linear growth rate f(k, a)

f(k, a) =
∂ lnD+

∂ ln a
(k, a). (4.3)

As for the linear power spectrum, the relative deviation of the growth rate f(k, a) grows with
k for the f(R) theories, while it is scale independent for the K-mouflage model. For the latter
model, the magnitude of δP/P and δf/f are directly set by the coupling constant βK .

4.3 Lyman-α power spectrum PδF (k)

We assume that the Lyman-α flux-decrement power spectrum PδF (k, z) can be written in
terms of the IGM density power spectrum PIGM as

PδF (k, z) = b2δF(1 + βµ2)2 PIGM(k)/(1 + f |kµ|/kNL) e
−(kµ/kth)2 , (4.4)

where µ = k ·ez/k is the cosine of the wave number direction with respect to the line of sight,
bδF the bias, β the large-scale anisotropy parameter associated with redshift-space distortions,
and kth the thermal broadening cutoff wave number. The anisotropic µ-dependent terms arise
from redshift-space distortions, due to the amplification or damping of fluctuations measured
along the line of sight because of the radial velocity fluctuations. Indeed, the mapping from
real space x to redshift space s writes as

s = x+
v∥
aH

ez, (4.5)

where v∥ is the radial peculiar velocity. Then, the velocity dispersion at a given position x

redistributes the matter at x over a nonzero width along the radial redshift-space coordinate
s∥. This leads to a smoothing of real-space density fluctuations and a damping of the redshift-

space power spectrum at high k. The factor e−(kµ/kth)2 describes the smoothing by the termal
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velocity dispersion, which we take to be Gaussian with the comoving wave number cutoff

kth =
aH

bth
, bth =

√

kBT

2mp
, (4.6)

where bth is the thermal velocity dispersion [47]. The factor 1/(1 + f |kµ|/kNL) describes
the smoothing by the velocity dispersion due to the virialization of collapsed structures. On
nonlinear scales, beyond kNL, shell crossing appears and different velocity streams coexist
at the same physical space location x. This must again damp the redshift-space power
spectrum. The factor f expresses that this damping appears earlier when the linear velocity
perturbations are amplified with respect to the linear density field. The factor (1 + βµ2)2

is the usual Kaiser effect [48], which describes that on large linear scales the single-stream
velocity field amplifies the density perturbations, as matter is moving inward onto overdense
regions. We simply take β ≃ 1.3 f , where f(k, a) is the linear growth rate defined in Eq.(4.3).
In principles, the factor β is defined as β = fbδF ,η/bδF ,δ, where we distinguish the biases
with respect to the linear density and velocity fields, bδF ,δ = ∂δF /∂δ and bδF ,η = ∂δF /∂η,
with η = −(∂v∥/∂x∥)/(aH) [39, 49]. However, we found that the analytical models for
bδF ,δ and bδF ,η [49, 50] do not fare very well. They do not improve the agreement with
numerical simulations and are not very stable, in particular the large inaccuracies on bδF ,η

can lead to artificially large or small values for β. This agrees with the results of [50], who
pointed out that velocity effects and redshift-space distortions are very difficult to capture
by simple analytical models. Therefore, we keep the simple expression (??), which appears
to be more robust. This agrees with numerical simulations, which find β ∼ 1.3f at redshift
z ≃ 3 [39]. The prefactor b2δF is fitted to the observations. Apart from direct hydrodynamical
simulations, an alternative would be to simulate the density and velocity fields associated with
the truncated Zeldovich approximation. which allows a more accurate treatment of thermal
and redshift-space distortions [41]. However, as we only wish to estimate the magnitude of
the impact of modified-gravity theories, for simplicity we keep the analytical model (4.4). For
precise measurements, one should in any case develop dedicated hydrodynamical simulations
[42, 51, 52].

We show in the left panel in Fig. 7 the ratio of the Lyman-α power spectrum to the
linear matter density power spectrum, at redshift z = 3 as a function of the wave number
k, for several values of µ. In agreement with Eq.(4.4), higher values of µ (i.e. directions
increasingly parallel to the line of sight) amplify the power spectrum on large scales, because
of the Kaiser effect, and damp the power on small scales because of the µ-dependent cutoffs,
due to the smoothing by the velocity dispersion that arises from the thermal distribution
and the gravitational multistreaming. The agreement with the numerical simulations [39] is
not perfect, as expected for such a simple model as (4.4), but we recover the main trends
and the magnitude of these redshift-space distortions. This suggests that our model captures
the main processes at work. We show in the right panel in Fig. 7 the logarithmic power
spectrum, ∆2

δF
= 4πk3PδF (k, µ) for µ = 1 and µ = 0. In agreement with the left panel, the

redshift-space distortions amplify the power at low k but give rise to a steeper falloff at high
k.

The expression (4.4) gives the anisotropic 3D Lyman-α power spectrum, over all direc-
tions of k. The observed 1D power spectrum along the line of sight is given by the standard
integral

PδF ,1D(kz) =

∫ ∞

−∞
dkxdkyPδF (k) = 2π

∫ ∞

kz

dk kPδF (k, µ = kz/k). (4.7)
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Figure 9. Left panel: relative deviation from the LCDM prediction of the 3D Lyman-α power
spectra given by an f(R) theory with fR0

= −10−5, at redshift z = 3, along directions parallel and
orthogonal to the line of sight. Right panel: case of the K-mouflage model.

4.4 Lyman-α power spectrum for modified-gravity theories

We show in Fig. 9 the deviations with respect to the LCDM prediction for the 3D Lyman-α
power spectra. For the f(R) theories, we can see in the left panel that on large linear and
weakly nonlinear scales the relative deviation of the Lyman-α power spectrum grows with
k, following the rise of the modification to the matter power spectrum itself. The relative
deviation is greater along the radial direction, which is also sensitive to the modification of
the redshift-space factor f . The relative deviation of the transverse power spectrum decreases
at higher k, following the behavior of the truncated Zeldovich power spectrum. Along the
radial direction, the relative deviation does not decrease at high k and goes to a finite value.
This is because it remains set by the change of the overall prefactor (1 + βµ2)2 in Eq.(4.4),
through the modification of the growth rate f . However, this result should not be trusted
at nonlinear scales, k ! 1h/Mpc, because this simple form of the Kaiser amplification factor
only holds on linear scales. However, this range does not dominate the integral (4.7) that
gives the 1D Lyman-α power spectrum.

For the K-mouflage model, the relative deviation of the Lyman-α power spectrum is scale
independent on large linear and weakly nonlinear scales, as it is set by the relative deviation
of the linear matter power spectrum. As for the f(R) scenarios, the relative deviation of
the transverse power spectrum decreases at high k, following the behavior of the truncated
Zeldovich power spectrum. Along the radial direction, the relative deviation shows a faster
decrease and even becomes negative at high k because of the numerator in Eq.(4.4), associated
with the greater velocity dispersion. Again, this behavior should not be trusted as these scales
are already in the highly nonlinear regime, which is not expected to be well described by our
simple modeling.

We show in Fig. 10 the relative deviation of the 1D Lyman-α power spectrum. As
compared with the 3D power spectra displayed in Fig. 9, the integration over the transverse
wave numbers smoothes the relative deviation from the LCDM prediction. Thus, we obtain a
deviation of order 4% for fR0

= −10−5, which does not vary much over 0.005 < k < 0.02 s/km,
and a deviation of order 7% for fR0

= −10−4. Our results agree reasonably well with the
numerical simulations from [14], which suggests that the model captures the main dependence
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Figure 8. Logarithmic 1D power spectrum ∆2
δF ,1D. The data points are observations from [53]

(circles) and [54] (stars). The solid line is our model.

This also defines the 1D logarithmic power as ∆2
δF ,1D(k) = (k/π)PδF ,1D(k), which we compare

with observations [53, 54] in Fig. 8. In agreement with Fig. 7, we recover the broad shape of the
observed 1D Lyman-α power spectrum. The amplitude itself is not predicted, as the bias bδF is
fitted to these observations. The lack of power at high k, k ! 0.015 s/km suggests some tension
between the observations and the numerical simulations [39], as increasing the power at high k
of the model would then worsen the agreement with the numerical simulations shown in Fig. 7.
We do not tune our model to fit better the observations, to keep a reasonable agreement with
both simulations and observations. This is likely to give a more robust framework. A more
accurate modeling would require detailed comparisons between observations and simulations
to better understand the different physical effects that enter the transformation from the
linear matter density power spectrum to the Lyman-α power spectrum.
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This also defines the 1D logarithmic power as ∆2
δF ,1D(k) = (k/π)PδF ,1D(k), which we compare

with observations [53, 54] in Fig. 8. In agreement with Fig. 7, we recover the broad shape of the
observed 1D Lyman-α power spectrum. The amplitude itself is not predicted, as the bias bδF is
fitted to these observations. The lack of power at high k, k ! 0.015 s/km suggests some tension
between the observations and the numerical simulations [39], as increasing the power at high k
of the model would then worsen the agreement with the numerical simulations shown in Fig. 7.
We do not tune our model to fit better the observations, to keep a reasonable agreement with
both simulations and observations. This is likely to give a more robust framework. A more
accurate modeling would require detailed comparisons between observations and simulations
to better understand the different physical effects that enter the transformation from the
linear matter density power spectrum to the Lyman-α power spectrum.
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velocity dispersion, which we take to be Gaussian with the comoving wave number cutoff

kth =
aH

bth
, bth =

√

kBT

2mp
, (4.6)

where bth is the thermal velocity dispersion [47]. The factor 1/(1 + f |kµ|/kNL) describes
the smoothing by the velocity dispersion due to the virialization of collapsed structures. On
nonlinear scales, beyond kNL, shell crossing appears and different velocity streams coexist
at the same physical space location x. This must again damp the redshift-space power
spectrum. The factor f expresses that this damping appears earlier when the linear velocity
perturbations are amplified with respect to the linear density field. The factor (1 + βµ2)2

is the usual Kaiser effect [48], which describes that on large linear scales the single-stream
velocity field amplifies the density perturbations, as matter is moving inward onto overdense
regions. We simply take β ≃ 1.3 f , where f(k, a) is the linear growth rate defined in Eq.(4.3).
In principles, the factor β is defined as β = fbδF ,η/bδF ,δ, where we distinguish the biases
with respect to the linear density and velocity fields, bδF ,δ = ∂δF /∂δ and bδF ,η = ∂δF /∂η,
with η = −(∂v∥/∂x∥)/(aH) [39, 49]. However, we found that the analytical models for
bδF ,δ and bδF ,η [49, 50] do not fare very well. They do not improve the agreement with
numerical simulations and are not very stable, in particular the large inaccuracies on bδF ,η

can lead to artificially large or small values for β. This agrees with the results of [50], who
pointed out that velocity effects and redshift-space distortions are very difficult to capture
by simple analytical models. Therefore, we keep the simple expression (??), which appears
to be more robust. This agrees with numerical simulations, which find β ∼ 1.3f at redshift
z ≃ 3 [39]. The prefactor b2δF is fitted to the observations. Apart from direct hydrodynamical
simulations, an alternative would be to simulate the density and velocity fields associated with
the truncated Zeldovich approximation. which allows a more accurate treatment of thermal
and redshift-space distortions [41]. However, as we only wish to estimate the magnitude of
the impact of modified-gravity theories, for simplicity we keep the analytical model (4.4). For
precise measurements, one should in any case develop dedicated hydrodynamical simulations
[42, 51, 52].

We show in the left panel in Fig. 7 the ratio of the Lyman-α power spectrum to the
linear matter density power spectrum, at redshift z = 3 as a function of the wave number
k, for several values of µ. In agreement with Eq.(4.4), higher values of µ (i.e. directions
increasingly parallel to the line of sight) amplify the power spectrum on large scales, because
of the Kaiser effect, and damp the power on small scales because of the µ-dependent cutoffs,
due to the smoothing by the velocity dispersion that arises from the thermal distribution
and the gravitational multistreaming. The agreement with the numerical simulations [39] is
not perfect, as expected for such a simple model as (4.4), but we recover the main trends
and the magnitude of these redshift-space distortions. This suggests that our model captures
the main processes at work. We show in the right panel in Fig. 7 the logarithmic power
spectrum, ∆2

δF
= 4πk3PδF (k, µ) for µ = 1 and µ = 0. In agreement with the left panel, the

redshift-space distortions amplify the power at low k but give rise to a steeper falloff at high
k.

The expression (4.4) gives the anisotropic 3D Lyman-α power spectrum, over all direc-
tions of k. The observed 1D power spectrum along the line of sight is given by the standard
integral

PδF ,1D(kz) =

∫ ∞

−∞
dkxdkyPδF (k) = 2π

∫ ∞

kz

dk kPδF (k, µ = kz/k). (4.7)
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Figure 10. Left panel: relative deviation from the LCDM prediction of the 1D Lyman-α power
spectrum at z = 3 given by f(R) theories, with fR0

= −10−4 (red dashed line), −10−5 (green solid
line) and −10−6 (blue dotted line). The points are the numerical simulations of [14] for fR0

= −10−4

(red crosses) and fR0
= −10−5 (green circles). The symmetric upper and lower black dot-dashed lines

are the ±1σ relative errors of the observational results of [54]. Right panel: case of the K-mouflage
model.

on the cosmology. The modest value of the deviation from the LCDM cosmology and the
lack of salient features suggest that the Lyman-α power spectrum is not a competitive tool to
constrain these f(R) theories, which are already strongly constrained by astrophysical probes
and Solar System tests of gravity that imply |fR0

| ! 10−6. Thus, it appears that to obtain
useful constraints on these scenarios one needs to reconstruct the 3D power spectrum, shown
in Fig. 9, which shows a stronger scale dependence and a higher magnitude for the peak of
the deviation from the LCDM power spectrum.

For the K-mouflage model, the 1D Lyman-α flux power spectrum shows a smooth relative
deviation that slowly decrease with k. This is because of the scale independence for the
relative deviation of the linear matter power spectrum, due to the zero mass of the scalar
field, while at high k nonlinear effects come into play that somewhat damp the dependence
of the flux power spectrum on the underlying linear power spectrum. The comparison with
the 1σ relative error of the observational results of [54] indicates that a precise analysis could
constrain K-mouflage models at the level of βK ! 0.1. This can be compared for instance with
CMB and background constraints, which give βK ! 0.2 [55]. Therefore, in contrast with the
case of the f(R) theories, the Lyman-α power spectrum could provide competitive constraints
for these models. This is partly due to their different screening mechanisms. In the case of
K-mouflage models, the nonlinear screening that ensures convergence to General Relativity
in the Solar System has not impact on weakly nonlinear cosmological scales (because this
corresponds to different regimes of the kinetic function K(χ) that are not necessarily related),
and the tests of gravity in the Solar System or astrophysical environments only imply βK ! 0.1
(provided K ′(χ) is sufficiently large in the small-scale quasistatic regime). However, obtaining
competitive constraints would require a more accurate modeling, or at least a comparison with
a set of K-mouflage numerical simulations to check the accuracy of our modeling, which we
leave to future works. In addition, the comparison with the case of the f(R) theories shows
that the shape of the relative deviation of the Lyman-α flux power spectrum can provide
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