Statistical analysis methods

 for Particle Physics: Status and Prospects(from an LHC perspéctive)

Nicolas Berger (LAPP Annecy)

Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes!

Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes

Randomness involved in all stages
\rightarrow Classical randomness: detector reponse
\rightarrow Quantum effects in production, decay

Hard scattering

PDFs, Parton shower, Pileup

Decays
 Detector response

Quantum Randomness: $\mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow 4 \mathrm{I}$

Quantum Randomness: $\mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow 4 \mid$

Quantum randomness: "Will I get an event today ?" \rightarrow only probabilistic answer

Discoveries

Randomness \Rightarrow fluctuations.

How to distinguish this from New Physics?
\rightarrow Need to quantify confidence in an excess...
Higgs discovery: "We have 5ه" !

Phys. Lett. B 716 (2012) 1-29

Discoveries ...or not

Randomness \Rightarrow fluctuations.

How to distinguish this from New Physics ?
$\rightarrow \ldots$ and robust methods to control spurious "discoveries"...

New Physics ?? 3. $9 \sigma!$?.. $.2 .1 \sigma$

Phys. Lett. B 775 (2017) 105

Parameter Measurements

Randomness \Rightarrow Measurement uncertainties
Key point for precision measurements,
\Rightarrow Answers to important questions (especially if no new peaks found at high mass...)

Consistency of the SM...
... or the fate of the universe

Statistical Methods

- Many ways to perform statistical analyses:
\rightarrow types of results
\rightarrow modeling assumptions
\rightarrow available CPU power
- Large experimental efforts \Rightarrow new developments:

LEP, TeVatron, BaBar/Belle, LHC, etc.

- Long term trend:
\rightarrow more complex experiments
\rightarrow more focus on systematics
\Rightarrow more detailed statistical modeling

- This talk: (biased) summary of current practices at LHC :
\rightarrow Focus on frequentist interpretation, profiling of systematics
\rightarrow Many aspects relevant also for other methods
e.g. Statistical modeling

Statistical Modeling

Statistical Model

Goal:

Describe the random process by which the data was obtained.
\rightarrow Build a Statistical Model

Ingredients:

1. Statistical description of the random aspects
\Rightarrow Probability distributions
2. Assumptions on the underlying statistical processes (physics, etc.)
\rightarrow Uncertainties on the assumptions themselves: systematic uncertainties

> "Systematic uncertainty is, in any statistical inference procedure, the uncertainty due to the incomplete knowledge of the probability distribution of the observables.
> G. Punzi, What is systematics?

Statistical results can only be as accurate as the model itself !

Modeling Rare Processes: Poisson Counting

Counting experiment:
Observable: a number of events n \rightarrow describe by a Poisson distribution

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

Typically both signal and background expected:
$\boldsymbol{P}(n ; S, \boldsymbol{B})=\boldsymbol{e}^{-(s+B)} \frac{(\boldsymbol{S}+\boldsymbol{B})^{n}}{n!} \quad \begin{aligned} & \mathrm{S}: \text { : of events from signal process } \\ & \text { B : of events from bkg. process(es) }\end{aligned}$
\rightarrow Example: assume \mathbf{B} is known, use the measured n to find out about the parameter S .
\longrightarrow usually up to uncertainties \rightarrow systematics

Model 2: Binned Shape Analysis

Count events in \mathbf{N} separate regions
\Rightarrow measure a histogram $\mathrm{n}_{1} \ldots \mathrm{n}_{\mathrm{N}}$.

Poisson distribution in each bin
$\mathrm{N}=1$: Back to the simple counting analysis
\rightarrow Can obtain fractions directly from MC
\rightarrow MC stat fluctuations can create artefacts, especially for $S \ll B$.

Model 3: Unbinned Shape Analysis

Observable: event-by-event $m_{1} \ldots m_{n}$
\rightarrow Describe shape of the distribution of m
\rightarrow Deduce the probability to observe $\mathrm{m}_{1} \ldots \mathrm{~m}_{\mathrm{n}}$
$\mathrm{H} \rightarrow \mathrm{y} \boldsymbol{\gamma}$-inspired example:

- Gaussian signal $P_{\text {signal }}(m)=G\left(m ; m_{H}, \sigma\right)$
- Exponential bkg $\boldsymbol{P}_{\mathrm{bkg}}(m)=\alpha \boldsymbol{e}^{-\alpha m}$

Expected yields : S, B
\Rightarrow Total PDF for a single event:

$P_{\text {total }}(m)=\frac{S}{S+B} G\left(m ; m_{H}, \sigma\right)+\frac{B}{S+B} \alpha e^{-\alpha m}$
\Rightarrow Total PDF for a dataset
Probability to observe n events
Probability to observe

 $P\left(\left\{m_{i}\right\}_{i=1 \ldots n}\right)=e^{-(S+B)} \frac{(S+B)^{n}}{n!} \prod_{i=1}^{n} \frac{S}{S+B} G\left(m_{i} ; m_{H}, \sigma\right)+\frac{B}{S+B} \alpha e^{-\alpha m_{i}}$

$\mathrm{H} \rightarrow \mathrm{Y}$

JHEP 11 (2018) 185

Categories

Multiple analysis regions often used
\rightarrow Useful to model separately if

- Regions with better sensitivity (avoids dilution)
- Control regions for backgrounds
- Multiple signal measurements

\Rightarrow Analysis categories :

$$
\begin{aligned}
& \text { PDF for category k } \\
& \left.\boldsymbol{P}\left(\boldsymbol{S} ;\left\{\boldsymbol{n}_{i}^{(k)}\right\}_{i=1 \ldots n_{\text {eus }}^{k}}^{k=1 \ldots n_{\text {ats }}}\right)=\prod_{k=1}^{n_{\text {atas }}} \boldsymbol{P}_{k} \mid \boldsymbol{S} ;\left\{\boldsymbol{n}_{i}^{(k)}\right\}_{i=1 \ldots n_{\text {evs }}^{(k)}}^{(k)}\right)
\end{aligned}
$$

No overlaps between categories
\Rightarrow No stat. correlations \Rightarrow product of PDFs.

Similar to a-posteriori combination but allows proper handling of correlated parameters (CR scale factors, systematics, etc.)

Categories for $\mathrm{H} \rightarrow \mathrm{Yy}$ Property Measurements

Categories also useful to provide measurements of separate kinematic regions \rightarrow e.g. differential cross-section measurements

Many categories, combined analysis for optimal use of all information

Systematics

Statistical model typically includes

- Parameters of interest (POIs) : $\mathbf{S}, \mathbf{\sigma \times B}, \mathbf{m}_{w^{\prime}} \ldots$
- Nuisance parameters (NPs) : other parameters needed to define the model
\rightarrow Ideally, constrained by data like the POI e.g. shape of $\mathrm{H} \rightarrow \mu \mu$ continuum bkg

What about systematics?

= what we don't know about the random process e.g. integrated luminosity L of a data sample for a cross-section measurement
\Rightarrow Parameterize using additional free parameters (NPs)
\rightarrow By definition, not constrained by the data
\Rightarrow Cannot really be free parameters, or would spoil the measurement (lumi free \Rightarrow no $\sigma \times B$ measurement!)

| "Systematic uncertainty is, in |
| :--- | ---: |
| any statistical inference |
| procedure, the uncertainty |
| due to the incomplete |
| knowledge of the probability |
| distribution of the |
| observables. |
| G. Punzi, What is systematics ? |

any statistical inference procedure, the uncertainty due to the incomplete knowledge of the probability distribution of the observables.
G. Punzi, What is systematics ?
\Rightarrow Need to inject additional information

Frequentist Constraints

Prototype: NP measured in a separate auxiliary experiment e.g. luminosity measurement
\rightarrow Build the combined PDF of the main+auxiliary measurements
$\boldsymbol{P}\left(\sigma, \theta_{\text {lumi }} ;\right.$ data $)=\boldsymbol{P}_{\text {main }}\left(\sigma, \theta_{\text {lumi }} ;\right.$ main data $) \boldsymbol{P}_{\text {aux }}\left(\theta_{\text {lumi }} ;\right.$ lumi data $)$
Independent measurements: \Rightarrow just a product
Gaussian form often used by default: $L_{\text {aux }}(\theta ;$ aux. data $)=G\left(\theta^{\text {obs }} ; \theta, \sigma_{\text {syst }}\right)$
In the combined PDF, systematic NPs are constrained Systematics \rightarrow just additional NPs
\rightarrow Often no clear setup for auxiliary measurements e.g. theory uncertainties on missing HO terms from scale variations \rightarrow Implemented in the same way nevertheless ("pseudo-measurement")

Likelihood, the full version (binned case)

Model Example: $\mathrm{H} \rightarrow \mathrm{Y} \boldsymbol{\gamma}$ Discovery Analysis

ATLAS Higgs Combination Model

W. Verkerke, SOS 2014

Computing Results

Using the PDF

Model describes the distribution of the observable: P(data; parameters)
\Rightarrow Possible outcomes of the experiment, for given parameter values
Can draw random events according to PDF : generate (pseudo-)data

$$
P(\lambda=5)
$$

$$
2,5,3,7,4,9, \ldots
$$

Each entry = separate "experiment"

Not a trivial task (huge challenge for HL-LHC!) but not the main goal here

Likelihood

Model describes the distribution of the observable: $\mathbf{P (n ; \lambda) , ~ P (d a t a ; ~ p a r a m e t e r s) ~}$
\Rightarrow Possible outcomes of the experiment, for given parameter values
We want the other direction: use data to get information on parameters

$$
P(\lambda=?)
$$

2

Estimate

Likelihood: L(parameters) = P(data;parameters)
\rightarrow same as PDF, but evaluated on data and function of the parameters

Estimating a Parameter: Maximum Likelihood

$$
L\left(\boldsymbol{S}, \boldsymbol{B} ; \boldsymbol{m}_{i}\right)=e^{-(\boldsymbol{s}+\boldsymbol{B})} \prod_{i=1}^{n_{\text {evs }}} \boldsymbol{S} P_{\mathrm{sig}}\left(\boldsymbol{m}_{i}, m_{H}\right)+\boldsymbol{B} P_{\mathrm{bkg}}\left(\boldsymbol{m}_{i}\right)
$$

Maximum Likelihood: value \hat{S} of \boldsymbol{S} for which the observed data is most likely?

In practice:
Just the usual best-fit value from MINUIT, RooFit, etc.

Good properties for large $\mathrm{n}_{\text {evts }}$:

- Converges to true value ("consistent")
- Smallest possible RMS ("efficient")
- Gaussian-distributed

Going further: Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. $\mathbf{H}_{0}: \mathbf{S = 0}$)
\rightarrow Goal : determine if H_{0} is true or false using a test based on the data

Possible outcomes:	Data disfavors H_{0} (Discovery claim)	Data favors H_{0} (Nothing found)
H_{0} is false (New physics!)	Missed discovery Discovery! $(1-$ Power)	
H_{0} is true (Nothing new)	False discovery claim Type-I error $(\rightarrow \mathrm{p}$-value, significance)	No new physics, none found

Stringent discovery criteria
\Rightarrow lower Type-I errors, higher Type-II errors
\rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.

Going further: Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. $\mathbf{H}_{0}: \mathbf{S = 0}$)
\rightarrow Goal : determine if H_{0} is true or false using a test based on the data

Possible outcomes:	Data disfavors H_{0} (Discovery claim)	Data favors H_{0} (Nothing found)
H_{0} is false (New physics!)	Missed discovery Discovery! $(1-$ Power)	
H_{0} is true (Nothing new)	False discovery claim Type-I error $(\rightarrow \mathrm{p}$-value, significance)	No new physics, none found

Stringent discovery criteria \Rightarrow lower Type-I errors, higher Type-II errors
\rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.
Background

Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses, say $S=S_{0}$ and $S_{=}=S_{1}$, the optimal discriminator is the Likelihood ratio (LR)

$$
\frac{L\left(S=S_{1} ; \text { data }\right)}{L\left(S=S_{0} ; \text { data }\right)}
$$

As for MLE, choose the hypothesis that is most likely given the data.
\rightarrow Minimizes Type-Il uncertainties for given level of Type-l uncertainties

Caveat: Strictly true only for simple hypotheses (no free parameters)

What about nuisance parameters? (systematics, etc.)

Hypothesis Testing with Likelihoods

Profile Likelihood Ratio

When comparing two hypotheses, say $\boldsymbol{S}=\boldsymbol{S}_{0}$ and $\boldsymbol{S}=\boldsymbol{S}_{1}$, define the Profile Likelihood ratio (PLR) :

$$
\frac{L\left(S=S_{1}, \hat{\hat{\theta}}\left(S_{1}\right) ; \text { data }\right)}{L\left(S=S_{0}, \hat{\hat{\theta}}\left(S_{0}\right) ; \text { data }\right)}
$$

Again, use the value of the NP θ that is most likely given the data : Profiling Not guaranteed to be optimal, but works extremely well in practice
\rightarrow In the following: all tests based on LR, will focus on p-values (Type-I errors), trusting that Type-ll errors are anyway as small as they can be...

Discovery

Discovery :

- H_{0} : background only ($\mathbf{S}=\mathbf{0}$) against
- \mathbf{H}_{1} : presence of a signal $(\mathbf{S} \neq \mathbf{0})$
\rightarrow For H_{1}, any $\mathrm{S} \neq \mathrm{O}$ is possible, which to use ? The one preferred by the data, $\hat{\mathbf{S}}$.
\Rightarrow Use

$$
t_{0}=-2 \log \frac{L(S=0, \hat{\hat{\theta}}(S=0))}{L(\hat{S}, \hat{\theta})}
$$

Why?
\rightarrow Large values of $\dagger_{0} \Leftrightarrow$ large observed S
\rightarrow Gaussian limit ($n_{\text {obs }}>5$): t_{0} follows a \mathbf{x}^{2} with $n_{\text {dor }}=1$, regardless of RPs!
\rightarrow In particular,

$$
Z=\sqrt{t_{0}}
$$

Example: Gaussian Counting

Count number of events n in data
\rightarrow assume n large enough so process is Gaussian
\rightarrow assume B is known, measure S
Likelihood: $\quad L(S ; n)=e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sqrt{S+B})^{2}}\right.}$

$$
\lambda(S ; n)=\left(\frac{n-(S+B)}{\sqrt{S+B}}\right)^{2}
$$

B

MLE for $\mathrm{S}: \hat{\mathrm{S}}=\mathrm{n}-\mathrm{B}$

Test statistic: assume $\hat{S}>0$,

$$
t_{0}=-2 \log \frac{L(S=0)}{L(\hat{S})}=\lambda(S=0)-\lambda(\hat{S})=\left|\frac{n-B}{\sqrt{B}}\right|^{2}=\left|\frac{\hat{S}}{\sqrt{B}}\right|^{2}
$$

Finally:

$$
Z=\sqrt{q_{0}}=\frac{\hat{S}}{\sqrt{B}}
$$

Known formula!
\rightarrow Strictly speaking only
valid in Gaussian regimge

Example: Poisson Counting

Same problem but now not assuming Gaussianity

$$
L(S ; n)=e^{-(S+B)}(S+B)^{n} \quad \lambda(S ; n)=2(S+B)-2 n \log (S+B)
$$

MLE: $\hat{S}=\mathrm{n}-\mathrm{B}$, same as Gaussian
Test statistic (for $\hat{S}>0$): $\quad \boldsymbol{q}_{0}=\lambda(S=0)-\lambda(\hat{S})=-2 \hat{S}-2(\hat{S}+B) \log \frac{B}{\hat{S}+B}$
Assuming asymptotic distribution for q_{0},

$$
Z=\sqrt{2\left[(\hat{S}+B) \log \left|1+\frac{\hat{S}}{B}\right|-\hat{S}\right]}
$$

Exact result can be obtained using pseudo-experiments \rightarrow close to $\sqrt{ } \mathrm{a}_{0}$ result

Asymptotic formulas justified by Gaussian regime, but remain valid even for small values of $\mathrm{S}+\mathrm{B}$ (5!)

Some Examples

High-mass X $\boldsymbol{\rightarrow} \mathbf{Y Y}$ Search: JHEP 09 (2016)

Likelihood Intervals

Confidence intervals from L :

- Test $\mathrm{H}\left(\mu_{0}\right)$ against alternative using

$$
t_{\mu_{0}}=-2 \log \frac{L\left(\mu=\mu_{0}\right)}{L(\hat{\mu})}
$$

μ can be several POI!

Asymptotics: $\dagger_{\mu} \sim X^{2}\left(N_{\text {PoI }}\right)$ under $H\left(\mu_{0}\right)$

In practice: $\left(\mathrm{N}_{\mathrm{PO}}=1\right)$

- Plot \dagger_{μ} vs. μ
- The minimum occurs at $\boldsymbol{\mu}=\hat{\boldsymbol{\mu}}$
- Crossings with $\mathbf{t}_{\mu}=\mathbf{Z}^{2}$ give the \pm Z σ uncertainties
\rightarrow Gaussian case: parabolic profile,

$$
\boldsymbol{t}_{\mu}=\left(\frac{\boldsymbol{\mu}-\hat{\mu}}{\sigma}\right)^{2} \Rightarrow \mu_{ \pm}=\hat{\mu} \pm \sigma \text { at } \boldsymbol{t}_{\mu}=1
$$

2D Example: Higgs σ_{VBF} vs. σ_{ggF}

Profiling

$$
t_{0}=-2 \log \frac{L(S=0, \hat{\theta}(S=0))}{L(\hat{S}, \hat{\theta})}
$$

Profiling : $\mathrm{tH} \rightarrow \mathrm{bb}$ as an example

Analysis uses low-S/B categories to constrain backgrounds.
\rightarrow Reduction in large uncertainties on tt bkg
\rightarrow Propagates to the high-S/B categories through the statistical modeling
\Rightarrow Care needed in the propagation (e.g. different kinematic regimes)

Profiling Issues

Too simple modeling can have unintended effects
\rightarrow e.g. single Jet E scale parameter:
\Rightarrow Low-E jets calibrate high-E jets - intended?

Two-point uncertainties:

\rightarrow Interpolation may not cover full configuration
space, can lead to too-strong constraints

Profiling Issues

Too simple modeling can have unintended effects
\rightarrow e.g. single Jet E scale parameter:
\Rightarrow Low-E jets calibrate high-E jets - intended?

Two-point uncertainties:

\rightarrow Interpolation may not cover full configuration
space, can lead to too-strong constraints

Pull/Impact plots

Critical to check syst modeling!
\rightarrow Ongoing program
\rightarrow Getting more important as syst uncertainties start to dominate

Example: pull/impact plots

Systematics NPs : usually

$$
N=N_{0}\left(1+\sigma_{\text {syst }} \theta\right), \theta \sim G(0,1)
$$

- central value $=\mathbf{0}, \rightarrow$ pre-fit expectation (usually MC)
\rightarrow If not: data/MC discrepancy ?
- uncertainty $=\mathbf{1}$ (normalized to the magnitude of the systematic)
\rightarrow If not: syst NP constrained by data \Rightarrow legitimate, or modeling issue ?
Impact on result of $\pm l \sigma$ shift of NP

Pull/Impact plots

Critical to check syst modeling!
\rightarrow Ongoing program
\rightarrow Getting more important as syst uncertainties start to dominate

Example: pull/impact plots

Systematics NPs : usually

$$
N=N_{0}\left(1+\sigma_{\text {syst }} \theta\right), \theta \sim G(0,1)
$$

- central value $=\mathbf{0}, \rightarrow$ pre-fit expectation (usually MC)
\rightarrow If not: data/MC discrepancy ?
- uncertainty $=\mathbf{1}$ (normalized to the magnitude of the systematic)
\rightarrow If not: syst NP constrained by data \Rightarrow legitimate, or modeling issue ?
Impact on result of $\pm l \sigma$ shift of NP

13 TeV single-† XS (arXiv:1612.07231)

Pull/Impact plots

Critical to check syst modeling!
\rightarrow Ongoing program
\rightarrow Getting more important as syst uncertainties start to dominate

Example: pull/impact plots

Systematics NPs : usually

$$
N=N_{0}\left(1+\sigma_{\text {syst }} \theta\right), \theta \sim G(\mathbf{0}, \mathbf{1})
$$

- central value $=\mathbf{0}, \rightarrow$ pre-fit expectation (usually MC)
\rightarrow If not: data/MC discrepancy ?
- uncertainty $=\mathbf{1}$ (normalized to the magnitude of the systematic)
\rightarrow If not: syst NP constrained by data \Rightarrow legitimate, or modeling issue ?
Impact on result of $\pm l \sigma$ shift of NP

Reparameterization

Start with basic measurement in terms of e.g. $\boldsymbol{\sigma} \times \mathbf{B}$
\rightarrow How to measure derived quantities (couplings, parameters in some theory model, etc.)? \rightarrow just reparameterize the likelihood: e.g. Higgs couplings: $\sigma_{\text {ggF }}, \sigma_{\text {VBF }}$ sensitive to Higgs coupling modifiers $\mathrm{k}_{\mathrm{V}}, \mathrm{K}_{\mathrm{F}}$.

Reparameterization: Limits
CMS Run 2 Monophoton Search: measured \mathbf{N}_{s} in a counting experiment reparameterized according to various DM models

Presentation of Results

Measurements often recast to constrain a particular theory model.
\rightarrow Ideally, by reparameterizing the likelihood and repeating the measurement

\Rightarrow Done by experiments for selected benchmark models
\rightarrow However, usually too complex to implement for many models
\rightarrow Publishing full likelihood typically impractical - most theorists do not want to deal with 4000 NPs...
\rightarrow Other approaches: e.g. reimplementing the analysis in a public fastsimulation framework (e.g. SUSY searches). However clear accuracy limitations

Presentation of Results

\rightarrow Current solution: publish covariance matrices in HEPData, together with the individual measurements

\rightarrow Valid in the Gaussian approximation
\rightarrow To go further, need some form of simplified likelihoods

- Profile likelihood - function of POI only (NPs profiled out)
- Additional terms for non-Gaussian effects
\rightarrow Significantly more complex (many dimensions!)
\rightarrow Will be needed eventually as measurements become syst-dominated

Other Methods

BLUE

Commonly-used ansatz for combination of measurements:

1. Build a \mathbf{x}^{2} : (same as $-2 \log L$
C_{ij} : covariance matrix of measurements:

$$
\chi^{2}(\boldsymbol{X})=\sum_{i}\left(\boldsymbol{X}_{i}^{\mathrm{obs}}-\boldsymbol{X}\right) \boldsymbol{C}_{i j}^{-1}\left(\boldsymbol{X}_{j}^{\mathrm{obs}}-\boldsymbol{X}\right)
$$

2. Estimate combined X from minimum of $\mathrm{X}^{2}(\mathrm{X})$

- In the Gaussian case, equivalent to ML solution \rightarrow "Best" : minimizes the combined uncertainty
- Solution is a linear combination of the inputs:
\Rightarrow "Best Linear Unbiased Estimator" (BLUE)
$\boldsymbol{\lambda}_{\mathrm{i}}=$ combination weight of measurement i

$$
\hat{X}=\sum_{i} \lambda_{i} x^{\downarrow} x^{b s, i}
$$

BLUE Example

ATLAS-CONF-2014-008

Example: World $m_{\text {top }}$ combination

ATLAS + CDF + CMS + D0 Preliminary	
	34.6
CDF Runll, di-lepton	-4.2
CDF Runll, all jets	5.5
CDF F Rull, $\mathrm{E}_{\mathrm{T}}^{\text {miss }}+$ jets $L_{m m}=8.7 \mathrm{~b}^{-1}$	6.3
D0 Runll, I+jets	10.3
D0 Runll, di-lepton	0.3
ATLAS 2011, I+jets	15.8
ATLLAS 2011, di-lepton $L_{m m}=4.70^{-1}$	-7.1
$\underset{L_{\text {mit }}=4.9 \text { fb }}{ }$ CMS $^{-1}$. $1+$ jets	27.7
CMS 2011, di-lepton	3.1
CMS 2011, all jets	7.5
Tevatron + LHC m $\mathrm{m}_{\text {top }}$ comb. March 2014	
-	
$\begin{array}{cc} -100 \\ \text { BLUE Combinatior } \end{array}$	$\begin{aligned} & 100 \\ & \text { ent [\% } \end{aligned}$

Limitation: relies on Gaussian assumptions (satisfied in this case!)
Non-trivial results for strong correlations, see Eur. Phy. J. C 74 (2014), 2717)

Uncertainty decomposition

All systematics NPs fixed to 0 : statistical uncertainty only exp. syst. NPs fixed to 0 : stat+theory uncertainty $\longrightarrow \downarrow$ ATLAS
$\xrightarrow[\underset{\sim}{c}]{\underset{\sim}{c}}$
$H \rightarrow \gamma \gamma, m_{H}=125.09 \mathrm{GeV}$

- Total - Theory - Stat

Uncertainty decomposition

All systematics NPs fixed to 0 : statistical uncertainty only exp. syst. NPs fixed
ATLAS
$H \rightarrow \gamma \gamma, m_{H}=125.09 \mathrm{GeV}$

- Total - Theory - Stat

$$
\mu=0.99 \pm 0.12(\text { stat }) \pm 0.06(\text { syst }) \pm 0.06(\text { thêo })
$$

Frequentist vs. Bayesian

All methods described so far are frequentist

- Probabilities (p-values) refer to outcomes if the experiment were repeated identically many times
- Parameters value are fixed but unknown
- Probabilities apply to measurements:
\rightarrow " $\mathrm{m}_{\mathrm{H}}=125.09 \pm 0.24 \mathrm{GeV}$ " :

\rightarrow i.e. $[125.09-0.24 ; 125.09+0.24] \mathrm{GeV}$ has $\mathrm{p}=68 \%$ to contain the true $\mathrm{m}_{H^{\prime}}$
\rightarrow if we repeated the experiment many times, we would get different intervals, 68% of which would contain the true m_{H}.
\rightarrow " 5σ Higgs discovery"
- if there is really no Higgs, such fluctuations observed in 3.10^{-7} of experiments

Not exactly the crucial question - what we would really like to know is

What is the probability that the excess we see is a fluctuation

\rightarrow we want P (no Higgs |data) - but all we have is $\mathrm{P}($ data | no Higgs)

Frequentist vs. Bayesian

Can use Bayes' theorem to address this:

same as in the frequentist

 formalism (=likelihood)$$
\boldsymbol{P}(\boldsymbol{\mu} \mid \text { data })=\frac{\boldsymbol{P}(\text { data } \mid \boldsymbol{\mu})}{\boldsymbol{P}(\text { data })} \boldsymbol{P}(\mu) \text { Prior Probability }
$$

Can compute $P(\mu \mid$ data $)$, if we provide $P(\mu)$
\rightarrow Implicitly, we have now made μ into a random variable

- Is $m_{H^{\prime}}$ or the presence of $\mathrm{H}(125)$, randomly chosen?
- In fact, different definition of p : degree of belief, not from frequencies.
- $P(\mu)$ Prior degree of belief - critical ingredient in the computation

Compared to frequentist PLR:
\oplus answers the "right" question
Θ answer depends on the prior
"Bayesians address the questions everyone is interested in by using assumptions that no one believes. Frequentist use impeccable logic to deal with an issue that is of no interest to anyone." - Louis Lyons

What was the question?

Definition of the p-value:

$$
\mathrm{p} \text {-value }=\frac{\text { number of signal-like outcomes with only background present }}{\text { all outcomes with only background present }}
$$

So 5σ significance $\left(p_{0} \sim 10^{-7}\right) \Leftrightarrow$ Occurs once in 10^{7} if only background present

However this is NOT "One chance in 10^{7} to be a fluctuation"

The first statement is about data probabilities - $\mathrm{P}\left(\right.$ data; $\left.\mathrm{H}_{0}\right)$

The second is on $\mathrm{P}\left(\mathrm{H}_{0}\right)$ itself - not addressed in the framework described so far
\rightarrow makes sense in a Bayesian context.

It's also a different statement (although they sometimes get confused)
\rightarrow If a signal outcome is also very unlikely, we may not want to reject H_{0}, even with $p_{0} \sim 10^{-7}$.

What was the question?

e.g. Faster-than-light neutrino anomaly

$$
(\mathrm{v}-c) / c=\left(2.37 \pm 0.32(\text { stat. })_{-0.24}^{+0.34}(\text { sys. })\right) \times 10^{-5} \quad \text { 6.2б above c }
$$

"despite the large significance of the measurement reported here and the stability of the analysis, the potentially great impact of the result motivates the continuation of our studies in order to investigate possible still unknown systematic effects that could explain the observed anomaly."
\Rightarrow Very unlikely to be a background fluctuation, but hard to believe since alternative ($v>c$) is far-fetched

"Extraordinary claims require extraordinary evidence"

Alternative: $\quad P($ fluctuation $)=\frac{\text { number of signal-like outcomes with only B present }}{\text { number of signal-like outcomes from any source (S or B) }}$

$$
=\frac{P(\text { deviation } \mid B) P(B)}{P(\text { deviation } \mid S) P(S)+P(\text { deviation } \mid B) P(B)}
$$

\rightarrow Needs a priori $P(S)$ and $P(B) \rightarrow$ Bayesian methods
\rightarrow In frequentist context, only have $\mathbf{p}_{0}=\mathbf{P}($ deviation $\mid B)$
\Rightarrow However usually same conclusion, assuming $P(S)$ is not $\ll P_{0} \ldots$

Expected Sensitivity

Expected Results

Expected results: median outcome under a given hypothesis \rightarrow e.g. SM case, background only, etc

$$
68 \% \text { of toys } \quad 95 \% \text { of toys }
$$

Two main ways to compute:
\rightarrow Pseudo-experiments: use statistical model to generate pseudo-data ("toy data"),

\rightarrow Asimov Datasets

Computed result

- Generate a "perfect dataset" e.g. for binned data, each bin set to expectation:
- Gives the median result immediately: median(toy results) \leftrightarrow result(median dataset)
- Get bands from asymptotic formulas: Band width

$$
\boldsymbol{\sigma}_{S_{0}, A}^{2}=\frac{S_{0}^{2}}{\boldsymbol{q}_{S_{0}}(\text { Asimov })}
$$

\oplus Much faster (1"toy")
\ominus Relies on Gaussian approximation
Strictly speaking, Asimov for X_{0}

$$
\Leftrightarrow \hat{\mathrm{X}}=\mathrm{X}_{0} \text { for all parameters } \mathbf{X},
$$

Expected Limits

1D: Asimov \& toys give similar results \rightarrow Asimov used in most cases
2D: Different results: "Typical" and "Median" exclusion do not match! \rightarrow Asimov still preferred since "typical" is usually more relevant.

CMS-HIG-18-011 ; CERN-EP-2018-309

Scan courtesy of Stefan Gadatsch

Look-Elsewhere Effect

Look-Elsewhere effect

Sometimes, unknown parameters in signal model
e.g. p-values as a function of m_{x}
\Rightarrow Effectively performing multiple, simultaneous searches
\rightarrow If e.g. small resolution and large scan range, many independent experiments

\rightarrow More likely to find an excess anywhere in the range, rather than in a predefined location
\Rightarrow Look-elsewhere effect (LEE)

Probability for a fluctuation: anywhere in the range at a given location
\rightarrow Global significance
\rightarrow Local significance

Global Significance

Global

$$
\begin{gathered}
p_{\text {global }}=1-\left(1-p_{\text {local }}\right)_{\uparrow}^{N} \approx N p_{\text {local }} \\
\\
\text { Trials factor }
\end{gathered}
$$

$\rightarrow \mathbf{p}_{\text {global }}>\mathbf{p}_{\text {local }} \Rightarrow$ global fluctuation more likely \Rightarrow less significant : $\mathbf{Z}_{\text {global }}<\mathbf{Z}_{\text {local }}$

$$
\stackrel{? ?}{N_{\text {trials }}=} N_{\text {indep }}=\frac{\text { scan range }}{\text { peak width }}
$$

Trials factor : naively = \# of independent intervals: However this is usually wrong

Gross \& Vitells EPJC 70:525-530,2010 Actually, $\quad N_{\text {trials }}=1+\sqrt{\frac{\pi}{2}} N_{\text {indep }} Z_{\text {local }}$ (1 POI, asymptotic limit)

Can also use brute-force toys:

$$
\begin{array}{|c|}
\hline \mathrm{z}_{\text {local }}=3.9 \sigma! \\
\left(\Leftrightarrow \mathrm{p}_{\text {local }} \sim 510^{-5}\right) \\
\hline
\end{array}
$$

Generate toys \Rightarrow find such an excess 2% of the time $\Rightarrow \mathrm{p}_{\text {global }} \sim 210^{-2}, \mathbf{Z}_{\text {global }}=2.1 \sigma$ Less exciting...

hidden layer 1 hidden layer 2 hidden layer 3
input layer

Towards the Future: Machine Learning

Machine Learning

Old idea, now reaching maturity in HEP applications. Main example is neural networks:

Weights w_{i} usually
Evolution towards Deep networks
\rightarrow several hidden layers from test data
\rightarrow many neurons per layer
Made possible by
\rightarrow Increased computing power (e.g. GPUs)
\rightarrow New methods : Cross-entropy training (same as max. likelihood), dropout, non-sigmoid activation functions, etc.) to improve training performance

Machine Learning Discriminants

Usual statistical methods work well for
\rightarrow Event counting
\rightarrow ID distributions

ML : Build discriminant,
\Rightarrow use in 1D shape analyses

Already in common use (e.g. BDTs)

DNNs:

\rightarrow Better performance
\rightarrow Can work on low-level inputs (4-vectors) \Rightarrow No need for "hand-crafted" variables

Ө Still can'† do better than Likelihood ratio
\oplus Can provide arbitrarily good approximations!

ML Computing Backends

ML computing-intensive \Rightarrow efficient implementations: e.g. TensorFlow, PyTorch
\rightarrow Parallelization, use of GPU architecture
\rightarrow New techniques: e.g.
automatic gradient computations

```
def f(x, dx):
    val = sin(x)
    dif = cos(x)*dx
    return (val, dif)
```

ATLAS: pyhf, reimplementation of ROOT-based HistFactory framework
CMS: TF implementation of combine code

	Likelihood	Likelihood+Gradient	Hessian
Combine, TR1950X 1 Thread	10 ms	830 ms	-
TF, TR1950X 1 Thread	70 ms	430 ms	165 s
TF, TR1950X 32 Thread	20 ms	71 ms	32 s
TF, 2x Xeon Silver 4110 32 Thread	17 ms	54 ms	24 s
TF, GTX1080	7 ms	13 ms	10 s
TF, V100	4 ms	7 ms	8 s

J. Bendavid

Other Applications

Many other applications:
Convolutive neural networks (CNNs)
\rightarrow "computer vision" : treat physics objects as images
\Rightarrow Ideal for future high-granularity detectors

Recurrent NNs (RNNs)

\rightarrow language processing : treat collections of objects (tracks, cluster, cells) as sentences

Adversarial NNs

\rightarrow trained in pairs to optimize against systematics, or data/MC differences.

Backfed Input CellInput CellNoisy Input CellHidden CellProbablistic Hidden CellSpiking Hidden CellOutput CellMatch Input Output CellRecurrent CellMemory CellDifferent Memory CellKernelConvolution or Pool

A mostly complete chart of
 Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org

Perceptron (P)
Feed Forward (FF)
Radial Basis Network (RBF)

Deep Feed Forward (DFF)

Recurrent Neural Network (RNN)
Long / Short Term Memory (LSTM)

Denoising AE (DAE)

Sparse AE (SAE)

The Neural Network Zoo

Deep Convolutional Network (DCN)

Deconvolutional Network (DN)

Deep Convolutional Inverse Graphics Network (DCIGN)

(W\&N) ди!чэセW 8u!̣n_ \perp ן.ınaN

Conclusion

- New developments in statistical methods in the last decade or so
\rightarrow Baseline methods reaching maturity
- Many challenges still to be addressed
\rightarrow Modeling complex experiments (systematics)
\rightarrow Pusblishing data to allow efficient re-interpretation
\rightarrow...
- New horizons going towards machine learning

Books and Courses

KENDALL'S ADVANCED
 Theory of STATISTICS

Alan Stuart \& J. Keith Ord
FIFTH EDITION

Volume 2
CLASSICAL INFERENCE AND RELATIONSHIP

Some courses available online:

Glen Cowan's Cours d'Hiver and 2010 CERN Academic Training lectures Kyle Cranmer's CERN Academic Training lectures Louis Lyons'and Lorenzo Moneta's CERN Academic Training Lectures

Extra Material

BLUE and PLR

$$
\begin{aligned}
X_{1}=X+\Delta_{1} \theta & \sim G\left(X^{*}, \sigma_{1}\right) \\
X_{2}=X+\Delta_{2} \theta & \sim G\left(X^{*}, \sigma_{2}\right) \\
\theta & \sim G(\mathbf{0}, \mathbf{1})
\end{aligned}
$$

PLR Computation: 2 measurements
+1 auxiliary measurement
Single measurement: $\quad \lambda(X, \theta)=\frac{1}{\sigma_{1}^{2}}\left(X+\Delta_{1} \theta-X_{1}^{\text {obs }}\right)^{2}+\left(\theta-\theta^{\text {obs }}\right)^{2}$
MLEs: $\left\{\begin{array}{l}\hat{\theta}=\theta^{\text {obs }} \\ \hat{X}=X_{1}^{\text {obs }}-\Delta_{1} \theta^{\text {obs }}\end{array}\right.$
PLR: $\quad \lambda(X)=\frac{(X-\hat{X})^{2}}{\sigma_{1, \text { tot }}^{2}} \quad \sigma_{1, \text { tot }}^{2}=\sigma_{1}^{2}+\Delta_{1}^{2}$
Combination: $\quad \lambda(X, \theta)=\frac{1}{\sigma_{1}^{2}}\left(X+\Delta_{1} \theta-X_{1}^{\text {obs }}\right)^{2}+\frac{1}{\sigma_{2}^{2}}\left(X+\Delta_{2} \theta-X_{2}^{\text {obs }}\right)^{2}+\left(\theta-\theta^{\text {obs }}\right)^{2}$
MLE: $\hat{X}=\lambda_{1} X_{1}^{\text {obs }}+\lambda_{2} X_{2}^{\text {obs }}+\lambda_{\theta} \theta^{\text {obs }} \quad \lambda_{1(2)}=\frac{\sigma_{2(1), \text { tot }}^{2}-\Delta_{1} \Delta_{2}}{\sigma_{1, \text { tot }}^{2}+\sigma_{2, \text { tot }}^{2}-2 \Delta_{1} \Delta_{2}}$
PLR: $\quad \lambda(X)=\frac{(X-\hat{X})^{2}}{\sigma_{X, \text { tot }}^{2}} \quad \sigma_{X, \text { tot }}^{2}=\frac{\sigma_{1, \text { tot }}^{2} \sigma_{2, \text { tot }}^{2}-\Delta_{1}^{2} \Delta_{2}^{2}}{\sigma_{1, \text { tot }}^{2}+\sigma_{2, \text { tot }}^{2}-2 \Delta_{1} \Delta_{2}}$

BLUE and PLR

BLUE computation: measurements X_{1} and X_{2} with uncorrelated statistical uncertainties σ_{1} and σ_{2}, correlated systematics Δ_{1} and Δ_{2}.

Single measurement: stat uncertainty σ_{1}, systematic Δ_{1}

- Uncorrelated uncertainties
- Assume everything is Gaussian
\Rightarrow Uncertainties add in quadrature:

$$
\sigma_{1, \text { tot }}^{2}=\sigma_{1}^{2}+\Delta_{1}^{2}
$$

Combination:

$$
C=\left[\begin{array}{cc}
\sigma_{1, \text { tot }}^{2} & \rho \sigma_{1, \text { tot }} \sigma_{2, \text { tot }} \\
\rho \sigma_{1, \text { tot }} \sigma_{2, \text { tot }} & \sigma_{2, \text { tot }}^{2}
\end{array}\right] \rho=\frac{\Delta_{1} \Delta_{2}}{\sigma_{1, \text { tot }} \sigma_{2, \text { tot }}}
$$

BLUE weights

$$
\hat{X}=\lambda_{1} X_{1}^{\mathrm{obs}}+\lambda_{2} X_{2}^{\mathrm{obs}}
$$

$$
\begin{array}{r}
\lambda_{1(2)}=\frac{\sigma_{2(1), \text { to }}^{2}-\rho \sigma_{1, \text { tot }} \sigma_{2, \text { tot }}}{\sigma_{1, \text { tot }}^{2}+\sigma_{2, \text { tot }}^{2}-2 \rho \sigma_{1, \text { tot }} \sigma_{2, \text { tot }}} \\
\sigma_{X, \text { tot }}^{2}=\frac{\sigma_{1, \text { tot }}^{2} \sigma_{2, \text { tot }}^{2}\left(1-\rho^{2}\right)}{\sigma_{1, \text { tot }}^{2}+\sigma_{2, \text { tot }}^{2}-2 \rho \sigma_{1, \text { tot }} \sigma_{2, \text { tot }}}
\end{array}
$$

Beyond Asymptotics: Toys

Asymptotics usually work well, but break down in some cases - e.g. small event counts.

Solution: generate pseudo data (toys) using the PDF, under the tested hypothesis
\rightarrow Also randomize the observable ($\theta^{\text {obs }}$) of each auxiliary experiment:

$$
G\left(\theta^{o b s} ; \theta, \sigma_{\text {syst }}\right)
$$ \rightarrow Samples the true distribution of the PLR

\Rightarrow Integrate above observed PLR to get the p-value
\rightarrow Precision limited by number of generated toys,
Small p-values (5 σ : $p \sim 10^{-7}!$) \Rightarrow large toy samples
Repeat $\mathrm{N}_{\text {toys }}$ times

Toys: Example

ATLAS X \rightarrow Zy Search: covers $200 \mathrm{GeV}<\mathrm{m}_{\mathrm{x}}<2.5 \mathrm{TeV}$
\rightarrow for $m_{x}>1.6 \mathrm{TeV}$, low event counts \Rightarrow derive results from toys

Asymptotic results (in gray) give optimistic result compared to toys (in blue)

Rare Processes

HEP : almost always rare processes

ATLAS :

- Event rate ~ 1 GHz
($\mathrm{L} \sim 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \sim 10 \mathrm{nb}^{-1} / \mathrm{s}, \sigma_{\text {tot }} \sim 10^{8} \mathrm{nb}$,
- Trigger rate ~ 1 kHz
(Higgs rate $\sim 0.1 \mathrm{~Hz}$)
$\Rightarrow P \sim 10^{-6} \ll 1\left(P_{H \rightarrow W} \sim 10^{-13}\right)$

A day of data: $\mathbf{N} \sim 10^{14} \gg 1$

Large N , small $\mathrm{P} \Rightarrow$ Poisson regime!
(Large $\mathrm{N}=$ design requirement, to get not-too-small $\lambda=$ NP...)
proton - (anti)proton cross sections

Asymptotic Approximation: Wilks' Theorem

\rightarrow Assume Gaussian regime for $\hat{\mathbf{S}}$ (e.g. large $\mathrm{n}_{\text {evts }}$)
\Rightarrow Central-limit theorem :
t_{0} is distributed as a X^{2} under the hypothesis $H_{0} \quad \boldsymbol{t}_{0}=-2 \log \frac{L(S=0)}{L(\hat{\boldsymbol{S}})}$

$$
f\left(t_{0} \mid H_{0}\right)=f_{\chi^{2}\left(n_{\text {dof }}=1\right)}\left(t_{0}\right)
$$

In particular, significance:

$$
Z=\sqrt{t_{0}}
$$

By definition,
$t_{0} \sim X^{2} \Rightarrow \nu t_{0} \sim G(0,1)$

Typically works well for for event counts O(5) and above (5 already "large"...)

The 1-line "proof" : asymptotically L and S are Gaussian, so

$$
L(S)=\exp \left[-\frac{1}{2}\left(\frac{S-\hat{S}}{\sigma}\right)^{2}\right] \Rightarrow t_{0}=\left(\frac{\hat{S}}{\sigma}\right)^{2} \Rightarrow t_{0} \sim \chi^{2}\left(n_{\mathrm{dof}}=1\right) \text { since } \hat{S} \sim G(0, \sigma)
$$

Intervals

If $\hat{\mu} \sim G\left(\mu^{*}, \sigma\right)$, known quantiles:

$$
P\left(\mu^{*}-\sigma<\hat{\mu}<\mu^{*}+\sigma\right)=68 \%
$$

This is a probability for $\hat{\mu} \quad$, not $\boldsymbol{\mu}$!
$\rightarrow \mu^{*}$ is a fixed number, not a random variable

But we can invert the relation:

$$
\begin{aligned}
& P\left(\mu^{*}-\sigma<\hat{\mu}<\mu^{*}+\sigma\right)=\mathbf{6 8 \%} \\
\Rightarrow & P\left(\left|\hat{\mu}-\mu^{*}\right|<\sigma\right)=\mathbf{6 8 \%} \\
\Rightarrow & P\left(\hat{\mu}-\sigma<\mu^{*}<\hat{\mu}+\sigma\right)=\mathbf{6 8 \%}
\end{aligned}
$$

\rightarrow This gives the desired statement on μ^{*} : if we repeat the experiment many times, $\left[\hat{\mu} \quad-\sigma, \hat{\mu} \quad \Varangle\right.$ will contain the true value 68% of the time: $\hat{\boldsymbol{\mu}}=\boldsymbol{\mu}^{*} \pm \sigma$ This is a statement on the interval $[\hat{\mu}-\sigma, \hat{\mu} \quad \ddagger$ बbtained for each experiment

Works in the same way for other interval sizes: [$\hat{\boldsymbol{\mu}} \quad$ - Z $\sigma, \hat{\boldsymbol{\mu}} \quad$ +ZZबith

Z	1	1.96	2
$C L$	0.68	0.95	0.955

Systematics NPs

Each systematics NP represent an independent source of uncertainty \Rightarrow Usually constrained by a single 1-D PDF (Gaussian, etc.)

Sometimes multiple parameters conjointly constrained by an n-dim. PDF. \rightarrow multiple measurements constraining multiple NPs
Assume n-dim Gaussian PDF: then can diagonalize the covariance matrix \mathbf{C} and re-express the uncertainties in basis of eigenvector NPs $\Rightarrow \mathbf{n} \mathbf{1}$-dim PDFs

Can also diagonalize to prune irrelevant uncertainties: keep NPs with large eigenvalues, combine in quadrature the others

Global Significance from Toys

Principle: repeat the analysis in toy data:
\rightarrow generate pseudo-dataset
\rightarrow perform the search, scanning over parameters as in the data
\rightarrow report the largest significance found
\rightarrow repeat many times
Local 3.9 σ

\Rightarrow The frequency at which a given Z_{0} is found is the global p-value
e.g. $X \rightarrow Y$ Search: $z_{\text {local }}=3.9 \sigma\left(\Rightarrow p_{\text {local }} \sim 510^{-5}\right)$, scanning $200<m_{x}<2000 \mathrm{GeV}$ and $0<\Gamma_{x}<10 \% m_{x}$
\rightarrow In toys, find such an excess 2% of the time
$\Rightarrow \mathrm{p}_{\text {global }} \sim 2 \mathrm{10}^{-2}, \mathbf{Z}_{\text {global }}=2.1 \sigma$ Less exciting...
\oplus Exact treatment
\ominus CPU-intensive especially for large Z (need $\sim O(100) / p_{\text {global }}$ toys)

Global Significance from Asymptotics

Principle: approximate the global p-value in the asymptotic limit
\rightarrow reference paper: Gross \& Vitells, EPJ.C70:525-530,2010

$$
N_{\text {trials }}=1+\sqrt{\frac{\pi}{2}} N_{\text {indep }} Z_{\text {iocal }}
$$

\rightarrow Trials factor is not just $\mathrm{N}_{\text {indep }}$, also depends on $\mathbf{Z}_{\text {local }}$!

Why?

\rightarrow slice scan range into $\mathrm{N}_{\text {indep }}$ regions of size ~ peak width
\rightarrow search for a peak in each region
\Rightarrow Indeed gives $N_{\text {trials }}=N_{\text {indep }}$.
However this misses peaks sitting on edges between regions
$\Rightarrow \operatorname{true} N_{\text {trials }}$ is $>N_{\text {indep }}!$

Global Significance from Asymptotics

Principle: approximate the global p-value in the asymptotic limit
\rightarrow reference paper: Gross \& Vitells, EPJ.C70:525-530,2010

Asymptotic trials factor (1 POI):

$$
\begin{aligned}
& \text { EPJ.C70:525-530,2010 } \\
& N_{\text {trials }}=1+\sqrt{\frac{\pi}{2}} N_{\text {indep }} Z_{\text {indep }}=\frac{\text { scan range }}{\text { peak width }}
\end{aligned}
$$

\rightarrow Trials factor is not just $\mathrm{N}_{\text {indep }}$, also depends on $\mathbf{Z}_{\text {local }}$!

Why?

\rightarrow slice scan range into $\mathrm{N}_{\text {indep }}$ regions of size ~ peak width
\rightarrow search for a peak in each region
\Rightarrow Indeed gives $N_{\text {trials }}=N_{\text {indep }}$.
However this misses peaks sitting on edges between regions
\Rightarrow true $N_{\text {trials }}$ is $>N_{\text {indep }}!$

Illustrative Example

Test on a simple example: generate toys with
\rightarrow flat background (100 events/bin)
\rightarrow count events in a fixed-size sliding window, look for excesses
Two configurations:

1. Look only in 10 slices of the full spectrum
2. Look in any window of same size as above, anywhere in the spectrum

Illustrative Example (2)

Very different results if the excess is near a boundary :

1. Look only in 10 slices of the full spectrum
2. Look in any window of same size as above, anywhere in the spectrum

Illustrative Example (3)

Classic Discoveries (1)

Z^{0} Discovery

Classic Discoveries (2)

ψ^{\prime} : discovered online by the (lucky) shifters

4, $\mathbf{1 6} \mid 94$

for siste
 Dø Preliminary Top Cross Section

First hints of top at DO: $O(10)$ signal events, a few bkg events, 2.4o

And now?

Short answer: The high-signal, low-background experiments have been done already (although a surprise would be welcome...)
e.g. at LHC:

- High background levels, need precise modeling
- Large systematics, need to be described accurately
- Small signals: need optimal use of available information:
- Shape analyses instead of counting
- Categories to isolated signal-enriched regions

Discoveries that weren't

UA I Monojets (1984)

Volume 139B, number 1,2
PHYSICS LETTERS
3 May 1984

EXPERIMENTAL OBSERVATION OF EVENTS WITH LARGE MISSING TRANSVERSE ENERGY ACCOMPANIED BY A JET OR A PHOTON (S) IN p \bar{p} COLLISIONS AT $\sqrt{s}=540 \mathrm{GeV}$

UA1 Collaboration, CERN, Geneva, Switzerland

At the present time we can only speculate about
the origin of this new effect. The missing transersse henergy can be due either to:
(i) One or more prompt neutrinos.

 within hhe presesnt statisitics.
(iii) New
The eits appen-interacecting neutral particles. multiplicities hanan the te corresponanding acr QCD jets, al-
housh hit might be per hough it might be premature to draw conclusions on
such ilimited statistics. such h linited statistics.
A number of theortice
 sibibities of excited quarks or teptons and of formpo-
site or coloured or supersymmetric w wand Higes A A
 the present collider experiment, on the rate of events
with lage missing transurse energy from gluino pair with large mising transerse energy from gluino pair
production with each gluino decaying into a quark, production with each gluino decaying into a quark,
antiquark, and photino. The non-interacting photinos may produce large apparent missing energy. For in-
stance, the calculation give an expectation of about tlance, the calalulation gives an expectation of about
100 single.e.e vents with $\Delta E_{M}>20$ GVV for aluino
and mass of $20 \mathrm{GeV} / \mathrm{c}^{2}$. Taking our rexcess of 5 everits above
backround as an upper limit for such a process, we background as an upper limit for such a process, we
deutec that the
gluino mass must be greater than about

Pentaquarks (2003)

BICEP2 B-mode Polarization (2014)

	PdSelected for a Viewpoint in Physics		
PRL 112, 241101 (2014)	PHYSICAL	REVIEW	LETTERS

Detection of \boldsymbol{B}-Mode Polarization at Degree Angular Scales by BICEP2

$$
r=0.20_{-0.05}^{+0.07}, \text { with } r=0 \text { disfavored at } 7.0 \sigma \text {. }
$$

Avoid spurious discoveries!

\rightarrow Treatment of modeling uncertainties, systematics in general

CaloGAN

FIG. 4: Composite Generator, illustrating three stream with attentional layer-to-layer dependence.

FIG. 5: Composite Discriminator, depicting additional domain specific expressions included in the final feature space.
M. Paganini et al., 1705.02355

Generation Method	Hardware	Batch Size	milliseconds/shower
GEANT4	CPU	N / A	1772
CALOGAN		1	13.1
		10	5.11
		128	2.19
		1024	2.03
	GPU	1	14.5
		4	3.68
		128	0.021
		512	0.014
		1024	0.012

