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Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes!
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Randomness in High-Energy Physics

Randomness involved in all stages
→ Classical randomness: detector reponse
→ Quantum effects in production, decay

Decays

Hard scattering

PDFs, Parton shower, Pileup

Detector response

ReconstructionImage Credits: 
S. Höche, 
SLAC-PUB-16160

Experimental data is produced by incredibly complex processes

https://arxiv.org/abs/1411.4085
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Quantum Randomness: H®ZZ*®4l
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Quantum Randomness: H®ZZ*®4l
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Quantum randomness: “Will I get an event today ?” → only probabilistic answer

Rare process: Expect 1 signal 
event every ~6 days

Phys. Rev. D 91, 012006
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Discoveries
Randomness  fluctuations. ⇒ fluctuations. 

How to distinguish this from New Physics ?

→ Need to quantify confidence in an excess...
Higgs discovery :  “We have 5s” !

“5s”

Phys. Lett. B 716 (2012) 1-29

http://www.sciencedirect.com/science/article/pii/S037026931200857X
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Discoveries ...or not

Phys. Lett. B 775 (2017) 105JHEP 09 (2016) 1

1 Year
Later

New Physics ?? 3.9σ !? ... 2.1σ

Randomness  fluctuations. ⇒ fluctuations. 

How to distinguish this from New Physics ?
→  … and robust methods to control spurious “discoveries”…

https://arxiv.org/abs/1707.04147
http://link.springer.com/article/10.1007/JHEP09%282016%29001
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Parameter Measurements
Randomness  Measurement uncertainties ⇒ Measurement uncertainties 

Key point for precision measurements, 
 Answers to⇒ Measurement uncertainties  important questions (especially if no new peaks found at 

high mass…)

 arXiv:1701.07240

JHEP12(2013)089

Consistency of the SM... … or the fate of the universe

https://arxiv.org/abs/1701.07240
http://inspirehep.net/record/1242456?ln=en
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Statistical Methods
• Many ways to perform statistical analyses: 

→ types of results
→ modeling assumptions
→ available CPU power

• Large experimental efforts  new developments:⇒ Measurement uncertainties 
LEP, TeVatron, BaBar/Belle, LHC, etc.

• Long term trend: 
→ more complex experiments
→ more focus on systematics

 more detailed statistical modeling⇒ Measurement uncertainties 

• This talk: (biased) summary of  current practices at LHC :
→ Focus on frequentist interpretation, profiling of systematics
→ Many aspects relevant also for other methods 
     e.g. Statistical modeling
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Statistical Modeling
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Statistical Model
Goal: 
Describe the random process by 
which the data was obtained.

→ Build a Statistical Model

Ingredients:

1. Statistical description of the random aspects  
 Probability distributions⇒ fluctuations. 

2. Assumptions on the underlying statistical 
processes (physics, etc.)
→ Uncertainties on the assumptions 
     themselves: systematic uncertainties 

Statistical results can only be as accurate as the model itself ! 

Decays

Hard scattering

Detector response

Reconstruction

"Systematic uncertainty is, in any 
statistical inference procedure, 
the uncertainty due to the 
incomplete knowledge of the 
probability distribution of the 
observables.
G. Punzi, What is systematics ?

https://www-cdf.fnal.gov/physics/statistics/notes/punzi-systdef.ps
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Modeling Rare Processes: Poisson Counting
Counting experiment:

Observable: a number of events n 
→ describe by a Poisson distribution 

Typically both signal and background expected:

→ Example: assume B is known, use the measured n to find out about the 
parameter S.

P (n ;λ ) = e−λ λ
n

n!

P (n ;S , B)=e−(S + B) (S + B) n

n!

S : # of events from signal process
B : # of events from bkg. process(es)

usually up to uncertainties → systematics
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Model 2: Binned Shape Analysis
Count events in N separate regions 

 measure a histogram n⇒ Measurement uncertainties 1...nN. 

 

N=1: Back to the simple counting analysis

→ Can obtain fractions directly from MC
→ MC stat fluctuations can create artefacts, especially for S B.≪B.

P ({ni } ;S , B) =∏
i=1

N

e−(Sf S , i+Bf B , i)
(S f S , i+B f B , i)

ni

ni !

Per-bin fractions (=shapes) of Signal and Background

Poisson distribution in each bin
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Model 3: Unbinned Shape Analysis
Observable: event-by-event m1... mn

→ Describe shape of the distribution of m
→ Deduce the probability to observe m1... mn

H→γγ-inspired example:
• Gaussian signal 
• Exponential bkg

 ⇒ Measurement uncertainties Total PDF for a single event:

 ⇒ fluctuations. Total PDF for a dataset

P signal(m) = G(m;mH ,s)

P total (m) =
S

S+B
G (m;mH ,s) +

B
S+B

α e−α m

P bkg(m) = α e−αm

slope α

mH

s

Signal

Background

Total

P ({mi }i=1…n) = e−(S+B) (S+B)
n

n! ∏
i=1

n
S

S+B
G(mi ;mH ,s) +

B
S+B

α e−αmi

Probability to observe
the value miProbability to observe n events

Expected yields : S, B
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H→γγ
JHEP 11 (2018) 185

https://link.springer.com/article/10.1007%2FJHEP11%282018%29185
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Categories
Multiple analysis regions often used

→ Useful to model separately if
• Regions with better sensitivity (avoids dilution)
• Control regions for backgrounds
• Multiple signal measurements

Þ Analysis categories : 

No overlaps between categories  
 ⇒ Measurement uncertainties No stat. correlations Þ product of PDFs.

Similar to a-posteriori combination but allows proper handling
of correlated parameters (CR scale factors, systematics,  etc.)

P (S ;{ni
(k )
}
i=1... nevts

(k )

k=1...ncats) =∏
k=1

ncats

Pk ( S ;{ni
(k)
}
i=1...nevts

(k) )

PDF for category k

arXiv:1712.008895

http://inspirehep.net/record/1644900
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Categories for H→γγ Property Measurements
Categories also useful to provide measurements of separate kinematic regions
→ e.g. differential cross-section measurements

H→ γγ Properties 
Measurement 

(ATLAS-CONF-2017-045)
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Analysis Selections

Many categories, combined analysis for optimal use of all information

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-045/
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Systematics
Statistical model typically includes
• Parameters of interest (POIs) : S, σ×BB, mW, …
• Nuisance parameters (NPs) : other parameters 

needed to define the model
→ Ideally, constrained by data like the POI

e.g. shape of H→μμ continuum bkg

What about systematics ?
= what we don’t know about the random process
e.g. integrated luminosity L of a data sample for a
cross-section measurement

Þ Parameterize using additional free parameters (NPs)
→ By definition, not constrained by the data

 ⇒ Measurement uncertainties Cannot really be free parameters, or 
would spoil the measurement
(lumi free Þ no σ×B measurement!B measurement!) 

Þ Need to inject additional information

Phys. Rev. Lett. 119 (2017) 051802

e−αmμμ

"Systematic uncertainty is, in 
any statistical inference 
procedure, the uncertainty 
due to the incomplete 
knowledge of the probability 
distribution of the 
observables.
G. Punzi, What is systematics ?

http://inspirehep.net/record/1599399
https://www-cdf.fnal.gov/physics/statistics/notes/punzi-systdef.ps
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Frequentist Constraints
Prototype: NP measured in a separate auxiliary experiment 
e.g. luminosity measurement

→ Build the combined PDF of the main+auxiliary measurements

Gaussian form often used by default:

In the combined PDF, systematic NPs are constrained
Systematics → just additional NPs

→ Often no clear setup for auxiliary measurements
e.g. theory uncertainties on missing HO terms from scale variations
→ Implemented in the same way nevertheless (“pseudo-measurement”)

P (s ,θ lumi ;data) = Pmain(s ,θ lumi ;main data) Paux (θ lumi ; lumi data)

Laux(θ ;aux. data) = G (θ
obs ;θ ,s syst)

Independent measurements: Þ just a product
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Likelihood, the full version (binned case)

Bin Yields or
Observable 

values
Sig/Bkg Shapes,

efficiencies

Systematics

L(μ , {θ j } j=1. ..nNP
;{ni

(k )
}
i=1... ndata

( k)

k=1. ..ncat , {θ j
obs
} j=1. .nNP

)=

∏
k=1

ncat

P [ ni ;μ ϵi , k( θ⃗ ) Si ,k ( θ⃗ ) + Bi , k( θ⃗) ] ∏
j=1

nsyst

G (θ j
obs ;θ j ;1)

DataPseudo-
experiments

MC
Auxiliary 

Data

Expected 
bin yield

POI NPs

×B number of categories!
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Model Example: H→γγ Discovery Analysis

Signal
Shape 

ParametersBackground
Parameters

Signal
PDFs

Bkg
PDFs

Main PDFSignal 
Normalization

mH

μ

Systematics
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ATLAS Higgs Combination Model

W. Verkerke, SOS 2014

https://indico.in2p3.fr/event/9742/contribution/16/material/1/0.pdf
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Computing Results
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Using the PDF
Model describes the distribution of the observable: P(data; parameters)
Þ Possible outcomes of the experiment, for given parameter values
Can draw random events according to PDF : generate (pseudo-)data

Generate 

P (λ=5) 2, 5, 3, 7, 4, 9, ….
Each entry = separate “experiment”

Unbinned

Not a trivial task (huge challenge for HL-LHC!) 
but not the main goal here
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Likelihood
Model describes the distribution of the observable:  P(n; λ), P(data; parameters)
Þ Possible outcomes of the experiment, for given parameter values
We want the other direction: use data to get information on parameters

Estimate

P (λ=?) 2

Likelihood:  L(parameters) = P(data;parameters)

?

→ same as PDF, but evaluated on data and function of the parameters



26

Estimating a Parameter: Maximum Likelihood

Maximum Likelihood: value Ŝ of 
S for which the observed data is 
most likely ?

In practice: 
Just the usual best-fit value from 
MINUIT, RooFit, etc.

Good properties for large nevts:
● Converges to true value (“consistent”)
● Smallest possible RMS (“efficient”)
● Gaussian-distributed

L(S ,B ;mi)=e−(S + B) ∏
i=1

nevts

S Psig(mi ,mH )+B Pbkg(mi)

ATLAS-CONF-2017-045

Max-Likelihood Ŝ 
Data not likely

Data not likely

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-045/
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Going further: Hypothesis Testing
Hypothesis: assumption on model parameters, say value of S (e.g. H0 : S=0)
→ Goal : determine if H0 is true or false using a test based on the data

 Possible 
 outcomes:
 

Data disfavors H0 
(Discovery claim)

Data favors H0

(Nothing found)

H0 is false 
(New physics!) Discovery! 

Missed discovery
Type-II error
(1 - Power)

H0 is true 
(Nothing new)

False discovery claim
Type-I error 
(→ p-value, significance)

No new physics, 
none found

Stringent discovery criteria 
 ⇒ Measurement uncertainties lower Type-I errors, higher Type-II errors

→ Goal: test that minimizes Type-II 
errors for given level of Type-I error.

Background

Type-I error
p-value

Signal

Type-II Error
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Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses, say S=S0 and S=S1, the 
optimal discriminator is the Likelihood ratio (LR) 

As for MLE, choose the hypothesis that is most likely given the data.
→ Minimizes Type-II uncertainties for given level of Type-I uncertainties

Caveat: Strictly true only for simple hypotheses (no free parameters)

What about nuisance parameters ? (systematics, etc.)

L(S=S1 ; data)

L(S=S0 ; data)



30

Hypothesis Testing with Likelihoods

Profile Likelihood Ratio

When comparing two hypotheses, say S=S0 and S=S1, define the 
Profile Likelihood ratio (PLR) : 

Again, use the value of the NP θ that is most likely given the data : Profiling
Not guaranteed to be optimal, but works extremely well in practice

→ In the following: all tests based on LR, will focus on p-values (Type-I errors),
trusting that Type-II errors are anyway as small as they can be...

L(S=S1 ,
^̂
θ(S1) ; data)

L(S=S0 ,
^̂
θ(S0) ; data)
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Discovery
Discovery :
• H0 : background only (S = 0) against
• H1: presence of a signal (S ≠ 0)
→ For H1, any S≠0 is possible, which to use ? 
     The one preferred by the data, Ŝ.

Þ Use 

Why ? 
→ Large values of t0  large observed S⇔ large observed S

→ Gaussian limit (nobs > 5): t0 follows a χ2 with ndof=1, regardless of NPs! 
→ In particular, 

t0 =−2 log
L(S=0 ,

^̂
θ (S=0))

L( Ŝ , θ̂ )

S=0

H0
H1

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011

Z = √ t0

μ ~ 0

μ≫sμ

fχ2,ndof=1(t0) 

https://arxiv.org/abs/1007.1727
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Example: Gaussian Counting
Count number of events n in data
→ assume n large enough so process is Gaussian
→ assume B is known, measure S

Likelihood :

MLE for S : Ŝ = n – B

Test statistic: assume Ŝ > 0,

Finally: 

L(S ;n) = e
−

1
2 (
n−(S+B)

√S+B )
2

B

√B
n

t0 =−2 log
L(S=0)

L( Ŝ)
= λ(S=0) − λ(Ŝ) = (

n−B

√B )
2

= ( Ŝ

√B )
2

Z = √ q0 =
Ŝ

√B

λ (S ;n) = (
n−(S+B)

√S+B )
2

Known formula!
→ Strictly speaking only 
valid in Gaussian regimge
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Example: Poisson Counting
Same problem but now not assuming Gaussianity

MLE: Ŝ = n – B, same as Gaussian

Test statistic (for Ŝ > 0):

Assuming asymptotic distribution for q0,

Exact result can be obtained using
pseudo-experiments → close to √q0 result

L(S ;n) = e−(S+ B)
(S+B)n λ (S ;n) = 2(S+B)−2n log (S+B)

q0 = λ(S=0) − λ ( Ŝ) = −2 Ŝ−2( Ŝ+B)  log
B

Ŝ+B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]

Asymptotic formulas justified by Gaussian
regime, but remain valid even for small 

values of S+B (5!)
See G. Cowan’s slides for case with B uncertainty

Eur.Phys.J.C71:1554,2011

http://www-conf.slac.stanford.edu/statisticalissues2012/talks/glen_cowan_slac_4jun12.pdf
https://arxiv.org/abs/1007.1727
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Some Examples High-mass X→γγ Search: JHEP 09 (2016) 1

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

p0 = 1.8 ´ 10-9  Û  Z = 5.9σ

http://link.springer.com/article/10.1007/JHEP09%282016%29001
http://www.sciencedirect.com/science/article/pii/S037026931200857X
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Likelihood Intervals
Confidence intervals from L:
• Test H(μ0) against alternative using

Asymptotics:  tμ ~ χ2(NPOI) under H(μ0)

In practice: (NPOI=1)
• Plot tμ vs. μ
• The minimum occurs at μ = μ̂
• Crossings with tμ= Z2 give the 

±Zσ uncertainties 

→ Gaussian case:  parabolic profile,

→ robust against non-Gaussian effects.
→ Can set upper limits on parameters using similar methods

H0
μ

tμ 0
=−2 log

L(μ=μ0)

L(μ̂ )

μ can be 
several POI!

ATLAS-CONF-2017-047 

H1
H1

tμ = ( μ−μ̂
s )

2

⇒ μ± = μ̂ ± s  at tμ = 1

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-047/
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2D Example: Higgs σVBF vs. σggF
ATLAS-CONF-2017-047 
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tggF,VBF

ggF

VBF

CL 68.3% (1σ) 68% 95%
1D T(CL) 1 0.989 3.84
2D T(CL) 2.30 2.28 5.99

T(CL)

 t < 2.28
t < 5.99

Gaussian case: elliptic 
paraboloid surface

t=−2 log
L(X0,Y 0)

L( X̂ , Ŷ )
∼ χ

2
(N dof=2)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-047/
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Profiling

t0 =−2 log
L(S=0 ,

^̂
θ (S=0))

L( Ŝ , θ̂ )
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Profiling : ttH→bb as an example
Analysis uses low-S/B categories to constrain backgrounds.
→ Reduction in large uncertainties on tt bkg
→ Propagates to the high-S/B categories through the
statistical modeling 
Þ Care needed in the propagation (e.g. different 
kinematic regimes)

ATLA
S- C

O
N

F- 2016-08
0

Fit

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-080/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-080/
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Profiling Issues
Too simple modeling can have unintended effects
→ e.g. single Jet E scale parameter:  
Þ Low-E jets calibrate high-E jets – intended ?

Two-point uncertainties: 
→ Interpolation may not cover full configuration
space, can lead to too-strong constraints

Jet E

JE
S

θJES Pre-fit

Post-fit

Pre -fit constraint Post -fit constraint

W. Verkerke, SOS 2014

https://indico.in2p3.fr/event/9742/contribution/16/material/1/0.pdf


40
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Pull/Impact plots
Critical to check syst modeling!
→ Ongoing program
→ Getting more important as syst 
uncertainties start to dominate

Example: pull/impact plots

Systematics NPs : usually

• central value = 0, → pre-fit 
expectation (usually MC)
→ If not: data/MC discrepancy ?

• uncertainty = 1 (normalized to the 
magnitude of the systematic) 
→ If not: syst NP constrained by data
 Þ legitimate, or modeling issue ?

Impact on result of ±1σ shift of NP 

ATLAS-CONF-2016-058

N = N 0 (1 + s syst θ) , θ ∼ G(0 , 1)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-058/
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Pull/Impact plots
Critical to check syst modeling!
→ Ongoing program
→ Getting more important as syst 
uncertainties start to dominate

Example: pull/impact plots

Systematics NPs : usually

• central value = 0, → pre-fit 
expectation (usually MC)
→ If not: data/MC discrepancy ?

• uncertainty = 1 (normalized to the 
magnitude of the systematic) 
→ If not: syst NP constrained by data
 Þ legitimate, or modeling issue ?

Impact on result of ±1σ shift of NP 

ATLAS-CONF-2016-05813 TeV single-t XS (arXiv:1612.07231)

N = N 0 (1 + s syst θ) , θ ∼ G(0 , 1)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-058/
https://arxiv.org/abs/1612.07231


43

Pull/Impact plots
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Presentation of Results
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Reparameterization
Start with basic measurement in terms of e.g. σ´B
→ How to measure derived quantities (couplings, parameters in some theory 
model, etc.) ?  → just reparameterize the likelihood:
e.g. Higgs couplings: σggF, σVBF sensitive to Higgs coupling modifiers κV, κF. 

L(s ggF ,sVBF) L(s ggF( κV ,κF) ,sVBF( κV ,κF)) ≡ L' ( κV ,κF)

sggF→s ggF(κV , κF)

sVBF→sVBF (κV , κF)
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Reparameterization: Limits
CMS Run 2 Monophoton Search: measured 
NS in a counting experiment reparameterized  
according to various DM models

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-16-039/
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Presentation of Results
Measurements often recast to constrain a particular theory model. 
→ Ideally, by reparameterizing the likelihood and repeating the measurement

Þ Done by experiments for selected benchmark models
→ However,  usually too complex to implement for many models

→ Publishing full likelihood typically impractical – most theorists do not want to 
deal with 4000 NPs...

→ Other approaches: e.g. reimplementing the analysis in a public fast-
simulation framework (e.g. SUSY searches). However clear accuracy limitations
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Presentation of Results
→ Current solution: publish covariance matrices in HEPData, together with the 
individual measurements

→ Valid in the Gaussian approximation
→ To go further, need some form of simplified likelihoods
• Profile likelihood – function of POI only (NPs profiled out)
• Additional terms for non-Gaussian effects
→ Significantly more complex (many dimensions!)
→ Will be needed eventually as measurements become syst-dominated

https://hepdata.net/
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Other Methods
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BLUE
Commonly-used ansatz for combination
of measurements:
1. Build a χ2: (same as -2logL 

  for Gaussian L)

2. Estimate combined X from minimum of χ2(X)

• In the Gaussian case, equivalent to ML solution 
→ “Best” : minimizes the combined uncertainty

• Solution is a linear combination of the inputs:

Þ  “Best Linear Unbiased Estimator” (BLUE)

χ
2
(X )=∑

i
( X i

obs
−X )C ij

−1 ( X j
obs
−X )

Cij : covariance matrix of 
measurements:

C=[
s1

2
ρs1s2 ⋯

ρs1s2 s2
2

⋯

⋮ ⋮ ⋱
]

ρ: correlation coefficients 

X̂ =∑
i

λ i X
obs , i

λi = combination weight 
of measurement i

λ =
C−1 J

JTC−1J
, J=(

1
1
⋮

)
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BLUE Example
Example: World mtop combination

ATLAS-CONF-2014-008

Limitation: relies on Gaussian assumptions (satisfied in this case!)
Non-trivial results for strong correlations, see Eur. Phy. J. C 74 (2014), 2717)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-008/
https://inspirehep.net/record/1242645
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Uncertainty decomposition
All systematics NPs fixed to 0 : statistical uncertainty only

1σ intervals

exp. syst. NPs fixed to 0 : stat+theory uncertainty

s syst = √s total
2

− s stat
2

s theo = √s stat+theo
2

− s stat
2

Subtraction in quadrature

μ = 0.99 ± 0.12 (stat ) ± 0.06 (syst) ± 0.06 ( theo)
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Uncertainty decomposition
All systematics NPs fixed to 0 : statistical uncertainty only

1σ intervals

exp. syst. NPs fixed to 0 : stat+theory uncertainty

s syst = √s total
2

− s stat
2

s theo = √s stat+theo
2

− s stat
2

Subtraction in quadrature

μ = 0.99 ± 0.12 (stat ) ± 0.06 (syst) ± 0.06 ( theo)

Various definitions of “Statistical uncertainty”
● Remaining uncertainty after systematic NPs fixed
● Uncertainty from propagating data uncertainties  
● Total uncertainty  systematic uncertainties⊖ systematic uncertainties

…
 ⇒ fluctuations. Each gives a different answer in general!
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Frequentist vs. Bayesian
All methods described so far are frequentist
• Probabilities (p-values) refer to outcomes 

if the experiment were repeated identically
many times

• Parameters value are fixed but unknown

• Probabilities apply to measurements:
→ “mH = 125.09 ± 0.24 GeV” :

→ i.e. [125.09 – 0.24 ; 125.09 + 0.24 ] GeV has p=68% to contain the true mH.
→ if we repeated the experiment many times, we would get different 
intervals, 68% of which would contain the true mH.

→ “5s Higgs discovery”
• if there is really no Higgs, such fluctuations observed in 3.10-7 of experiments

Not exactly the crucial question – what we would really like to know is
What is the probability that the excess we see is a fluctuation
→ we want P(no Higgs |data) – but all we have is P(data | no Higgs)

Experiment 6

Experiment 4

Experiment 3

Experiment 2

Experiment 5

Experiment 1

μ*–σ     μ*    μ*+σ
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Frequentist vs. Bayesian
Can use Bayes’ theorem to address this:

Can compute P(μ|data), data), if we provide P(μ)
→ Implicitly, we have now made μ into a random variable

– Is mH, or the presence of H(125), randomly chosen ?
– In fact, different definition of p: degree of belief, not from frequencies.
– P(μ) Prior degree of belief – critical ingredient in the computation

Compared to frequentist PLR:
⊕ answers the “right” question
⊖ answer depends on the prior

P (μ∣data) =
P (data∣μ)

P (data)
P (μ)

“Bayesians address the questions 
everyone is interested in by using 
assumptions that no one believes. 
Frequentist use impeccable logic to 
deal with an issue that is of no 
interest to anyone.”  - Louis Lyons

same as in the frequentist 
formalism (=likelihood)

irrelevant normalization factor

Prior Probability
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What was the question ?
Definition of the p-value:

So 5σ significance (p0~10-7)  ⇔ large observed S Occurs once in107 if only background present

However this is NOT “One chance in 107 to be a fluctuation”

The first statement is about data probabilities – P(data; H0)

The second is on P(H0) itself – not addressed in the framework described so far
→ makes sense in a Bayesian context.

It’s also a different statement (although they sometimes get confused)
→ If a signal outcome is also very unlikely, we may not want to 
     reject H0, even with p0 ~ 10-7.

p-value =
number of signal-like outcomes with only background present

all outcomes with only background present

http://www.nytimes.com/2012/07/05/science/cern-physicists-may-have-discovered-higgs-boson-particle.html?pagewanted=all
https://understandinguncertainty.org/explaining-5-sigma-higgs-how-well-did-they-do
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What was the question ?
e.g. Faster-than-light neutrino anomaly

“despite the large significance of the measurement reported 
here and the stability of the analysis, the potentially great impact 
of the result motivates the continuation of our studies in order to 
investigate possible still unknown systematic effects that could 
explain the observed anomaly.”

P ( fluctuation) =
number of signal-like outcomes with only B present

number of signal-like outcomes from any source (S or B)

 ⇒ Measurement uncertainties Very unlikely to be a background fluctuation, but 
hard to believe since alternative (v>c) is far-fetched

Alternative:

→ Needs a priori P(S) and P(B) → Bayesian methods
→ In frequentist context, only have p0 = P(deviation|B) 

 ⇒ fluctuations. However usually same conclusion, assuming P(S) is not  p≪ p 0...

6.2σ above c

c

=
P (deviation∣B) P (B)

P (deviation∣S)P (S) + P (deviation∣B) P (B)

“Extraordinary claims 
require extraordinary 
evidence”

https://arxiv.org/abs/1109.4897v2
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Expected 
Sensitivity
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Expected Results
Expected results: median outcome under a given hypothesis
→ e.g. SM case, background only, etc

Two main ways to compute:

→ Pseudo-experiments: use statistical
model to generate pseudo-data (“toy data”),

→ Asimov Datasets
• Generate a “perfect dataset”

e.g. for binned data, each bin set to expectation:
• Gives the median result immediately:

median(toy results)  result(median dataset) ↔ result(median dataset) 
• Get bands from asymptotic formulas:

Band width

⊕ Much faster (1 “toy”)
⊖ Relies on Gaussian approximation

s S0 , A
2

=
S0

2

qS0
(Asimov)

Strictly speaking, Asimov for X0 
 ⇔ large observed S X̂ = X0 for all parameters X, 

Computed result

95% of toys68% of toys

Nu
m

be
r o

f T
oy

s

Eur.Phys.J.C71:1554,2011

https://arxiv.org/abs/1007.1727


60

Expected Limits
1D: Asimov & toys give similar results → Asimov used in most cases
2D: Different results: “Typical” and “Median” exclusion do not match!
→Asimov still preferred since “typical” is usually more relevant.

CMS-HIG-18-011 ; CERN-EP-2018-309 
Asimov
Toys

http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-18-011/index.html
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Look-Elsewhere Effect
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Look-Elsewhere effect
Sometimes, unknown parameters in signal 
model 
e.g. p-values as a function of mX

Þ Effectively performing multiple, simultaneous 
searches
→ If e.g. small resolution and large 
scan range, many independent experiments

→ More likely to find an excess 
anywhere in the range, rather 
than in a predefined location

 ⇒ fluctuations. Look-elsewhere effect (LEE)

Probability for a fluctuation: anywhere in the range → Global significance
at a given location → Local significance
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Global Significance

→ pglobal > plocal  Þ  global fluctuation more likely  less significant : ⇒ Measurement uncertainties Zglobal < Zlocal 

Trials factor : naively = # of independent intervals:
However this is usually wrong

Actually, 

(1 POI, asymptotic limit)

Can also use brute-force toys:

Generate toys  find such an excess 2% of the time ⇒ Measurement uncertainties 
 p⇒ Measurement uncertainties global ~ 2 10-2, Zglobal = 2.1σ Less exciting...

pglobal = 1 − (1−plocal)
N
≈ N plocal

Trials factor 

Global 
p-value

Local 
p-value

N trials

??
= N indep =

scan range
peak width

N trials = 1 + √
π
2
N indep Zlocal

Gross & Vitells EPJC 70:525-530,2010

 Zlocal = 3.9σ ! 
(  p⇒ Measurement uncertainties local ~ 5 10-5), 
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Towards the Future: 
Machine Learning
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Machine Learning
Old idea, now reaching maturity in HEP applications. 
Main example is neural networks:

Evolution towards Deep networks
→ several  hidden layers
→ many neurons per layer
Made possible by 
→ Increased computing power (e.g. GPUs)
→ New methods : Cross-entropy training (same as max. likelihood), dropout, 
non-sigmoid activation functions, etc.) to improve training performance

In
pu

t V
ar

ia
bl

es

O
utpu t Varia bles

Σ σ

w1

wn

…In
pu

ts

O
ut

pu
t

Weights

Weights wi usually 
from test data 
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Machine Learning Discriminants
Usual statistical methods work well for
→ Event counting
→ 1D distributions

ML : Build discriminant,
 ⇒ Measurement uncertainties use in 1D shape analyses

Already in common use (e.g. BDTs)

DNNs: 
→ Better performance
→ Can work on low-level inputs (4-vectors)
      ⇒ fluctuations. No need for “hand-crafted” variables

 ⊖ Still can’t do better than Likelihood ratio
 ⊕ Can provide arbitrarily good approximations!

X→WW(H→bb)

P. Baldi, P. Sadowski & D. Whiteson, Nature Comm. vol. 5, 4308 (2014)

PLB 779 (2018) 283–316
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ML Computing Backends
ML computing-intensive  efficient implementations:⇒ Measurement uncertainties 
e.g. TensorFlow, PyTorch

→ Parallelization, use of GPU architecture
→ New techniques: e.g. 
automatic gradient computations

ATLAS: pyhf, reimplementation of ROOT-based 
    HistFactory framework

CMS: TF implementation of combine code

L. Heinrich

J. Bendavid

def f(x, dx):
  val = sin(x)
  dif = cos(x)*dx
  return (val, dif)

https://tensorflow.org/
https://pytorch.org/
https://github.com/diana-hep/pyhf
https://github.com/bendavid/HiggsAnalysis-CombinedLimit/tree/tensorflowfit_10x
https://indico.cern.ch/event/702612/contributions/2958658/attachments/1649623/2640003/pyhf.pdf
https://indico.cern.ch/event/750215/contributions/3105052/attachments/1701062/2739491/tffit-Aug15-2018.pdf
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Other Applications
Many other applications:
Convolutive neural networks (CNNs) 
→ “computer vision” : treat physics objects as images

 ⇒ Measurement uncertainties Ideal for future high-granularity detectors

Recurrent NNs (RNNs)
→ language processing : treat collections of objects 
(tracks, cluster, cells) as sentences

Adversarial NNs
→  trained in pairs to optimize against systematics, or 
data/MC differences.

JHEP 07 (2016) 069
PRL. 120, 042003 (2018)

W’→ WZ

QCD

Factors 100-1000 gain in 
shower simulation time

Geant4

GAN
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The Neural Network Zoo

http://www.asimovinstitute.org/neural-network-zoo/
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Conclusion

• New developments in statistical methods in the last decade or so
→ Baseline methods reaching maturity

• Many challenges still to be addressed
→ Modeling complex experiments (systematics)
→ Pusblishing data to allow efficient re-interpretation
→ …

• New horizons going towards machine learning
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Books and Courses

Some courses available online:
Glen Cowan’s Cours d’Hiver and 2010 CERN Academic Training lectures
Kyle Cranmer’s CERN Academic Training lectures
Louis Lyons’and Lorenzo Moneta’s CERN Academic Training Lectures

https://indico.lal.in2p3.fr/event/1681/
https://indico.cern.ch/event/77830/
https://indico.cern.ch/event/126254/
https://indico.cern.ch/event/545212/
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Extra Material
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BLUE and PLR
X1 = X + Δ1θ ∼ G (X* ,s 1)

X2 = X + Δ2θ ∼ G (X* ,s 2)

θ ∼ G (0, 1)

s1 , tot
2

= s1
2
+ Δ1

2

PLR Computation:    2 measurements 
+ 1 auxiliary measurement

Single measurement: λ(X ,θ) =
1

s1
2 (X + Δ1θ−X1

obs
)

2
+ (θ−θ

obs
)

2

Combination: λ(X ,θ) =
1

s1
2 (X + Δ1θ−X1

obs
)

2
+

1

s2
2 (X + Δ2θ−X 2

obs
)
2
+ (θ−θ

obs
)

2

X̂ = λ 1X1
obs

+ λ 2X2
obs

+ λθθ
obs λ 1(2) =

s 2(1) , tot
2

− Δ 1Δ 2

s 1 , tot
2

+ s2 , tot
2

− 2Δ1Δ 2

s X , tot
2

=
s1 , tot

2
s 2 , tot

2
−Δ1

2
Δ 2

2

s 1 , tot
2

+ s2 , tot
2

− 2Δ 1Δ2

λ (X ) =
(X− X̂ )2

s X , tot
2

X̂ = X1
obs

− Δ 1θ
obs

θ̂ = θ
obs

λ (X ) =
(X− X̂ )

2

s1, tot
2

MLEs:

PLR:

MLE:

PLR:



74

BLUE and PLR
BLUE computation: measurements X1 and X2 with uncorrelated 
statistical uncertainties σ1 and σ2, correlated systematics Δ1 and Δ2. 

Single measurement: stat uncertainty σ1 , systematic Δ1

- Uncorrelated uncertainties
- Assume everything is Gaussian

 ⇒ Measurement uncertainties Uncertainties add 
    in quadrature:

C = [
s1, tot

2
ρs1, tots 2, tot

ρs 1, tots 2, tot s2, tot
2 ] ρ =

Δ1Δ 2

s 1 , tots 2 , tot

Eur. Phys. J. C, 74 (2014) 2717

s1 , tot
2

= s1
2
+ Δ1

2

Combination:

BLUE weights X̂ = λ 1X1
obs

+ λ 2X 2
obs λ 1(2) =

s 2(1) , tot
2

− ρs 1 , tots 2 , tot

s 1 , tot
2

+ s2 , tot
2

− 2ρs 1 , tots 2 , tot

s X , tot
2

=
s1 , tot

2
s 2 , tot

2
(1 − ρ

2
)

s 1 , tot
2

+ s2 , tot
2

− 2ρs1 , tots 2 , tot
Propagate uncertainties from C:

https://inspirehep.net/record/1242645
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Beyond Asymptotics: Toys
Asymptotics usually work well, but break down in 
some cases – e.g. small event counts.

Solution: generate pseudo data (toys) using the PDF, 
under the tested hypothesis
→ Also randomize the observable 
(θobs) of each auxiliary experiment:
→ Samples the true distribution of the PLR

 ⇒ Measurement uncertainties Integrate above observed PLR to get the p-value
→ Precision limited by number of generated toys, 
Small p-values (5σ : p~10-7!) Þ large toy samples 

p(data|x)

PDF

Pseudo data

CMS-PAS-HIG-11-022

q0

Repeat Ntoys times

G (θ
obs ;θ ,s syst)

http://cds.cern.ch/record/1376643
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Toys: Example  arXiv:1708.00212

ATLAS X→Zγ Search: covers 200 GeV < mX < 2.5 TeV
→ for mX > 1.6 TeV, low event counts Þ derive results from toys

Asymptotic results (in gray) give optimistic result compared to toys (in blue) 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2016-14/
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Rare Processes
HEP : almost always rare processes
 
ATLAS : 
• Event rate ~ 1 GHz

(L~1034 cm-2s-1~10 nb-1/s, stot~108 nb, )
• Trigger rate ~ 1 kHz

(Higgs rate ~ 0.1 Hz)
 ⇒ fluctuations. P ~ 10-6  1 ≪ p (PH→γγ ~ 10-13)

A day of data: N ~ 1014  1 ≫ 1 

Large N, small P Þ Poisson regime!

(Large N = design requirement,
to get not-too-small λ=NP...)

W.J. Stirling, private 
communication
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Asymptotic Approximation: Wilks’ Theorem
→ Assume Gaussian regime for Ŝ (e.g. large nevts) 

 ⇒ Measurement uncertainties Central-limit theorem : 
  t0 is distributed as a χ2 under the hypothesis H0

In particular, significance:

Typically works well for for event counts O(5) 
and above (5 already “large”...)

Cowan, Cranmer, Gross & Vitells
Eur.Phys.J.C71:1554,2011

Z = √ t0

f ( t0 ∣H0 ) = f
χ

2
(ndof=1) ( t0 ) μ ~ 0

μ≫sμ

fχ2,ndof=1(t0) 

The 1-line “proof” : asymptotically L and S are Gaussian, so

t 0=−2 log
L(S=0)

L( Ŝ)

By definition,
  t0 ~ χ2  √t⇒ Measurement uncertainties 0 ~ G(0,1)

L(S) = exp [− 1
2

( S− Ŝs )
2

] ⇒ t0= ( Ŝs )
2

⇒ t0 ∼ χ
2
(ndof=1)  since Ŝ∼ G (0,s )

t0

https://arxiv.org/abs/1007.1727
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Intervals
If μ̂ ~ G(μ*, σ), known quantiles : 

This is a probability for μ̂ , not μ* !
→ μ* is a fixed number, not a random variable

But we can invert the relation:

→ This gives the desired statement on μ* : if we repeat the experiment many 
times, [μ̂ - σ, μ̂ + σ] will contain the true value 68% of the time: μ̂ = μ* ± σ  
This is a statement on the interval [μ̂ - σ, μ̂ + σ] obtained for each experiment

Works in the same way for other interval
sizes: [μ̂ - Zσ, μ̂ + Zσ] with

Experiment 6

Experiment 4

Experiment 3

Experiment 2

Experiment 5

Experiment 1

μ*–σ     μ*    μ*+σ

Z 1 1.96 2
CL 0.68 0.95 0.955

P (μ*
− s < μ̂ < μ

*
+ s) = 68 %

⇒ P (∣ μ̂ − μ
*
∣< s) = 68 %

P (μ*
− s < μ̂ < μ

*
+ s) = 68 %

⇒ P (μ̂ − s < μ
*
< μ̂ + s) = 68 %
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Systematics NPs
Each systematics NP represent an independent source of uncertainty

 ⇒ Measurement uncertainties Usually constrained by a single 1-D PDF (Gaussian, etc.)

Sometimes multiple parameters conjointly constrained by an n-dim. PDF.
→ multiple measurements constraining multiple NPs 
Assume n-dim Gaussian PDF: then can diagonalize the covariance matrix C 
and re-express the uncertainties in basis of eigenvector NPs  ⇒ Measurement uncertainties n 1-dim PDFs

Can also diagonalize to prune irrelevant uncertainties: keep NPs with large 
eigenvalues, combine in quadrature the others 

Phys.Rev. D96 (2017) no.7, 072002

80 NPs
19 NPs vs 80 3 NPs vs. 80

http://inspirehep.net/record/1519834
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Global Significance from Toys

Principle: repeat the analysis in toy data:
→ generate pseudo-dataset
→ perform the search, scanning over parameters
     as in the data
→ report the largest significance found
→ repeat many times 

 ⇒ Measurement uncertainties The frequency at which a given Z0 is found is the global p-value

e.g. X→γγ Search: Zlocal = 3.9σ (  p⇒ Measurement uncertainties local ~ 5 10-5), 
scanning 200 < mX< 2000 GeV and  0 < ΓX < 10% mX 

→ In toys, find such an excess 2% of the time 
 p⇒ Measurement uncertainties global ~ 2 10-2, Zglobal = 2.1σ Less exciting...

 ⊕ Exact treatment
 CPU-intensive⊖  especially for large Z (need ~O(100)/pglobal toys)

Local 3.9σ
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Global Significance from Asymptotics
Principle: approximate the global p-value in the asymptotic limit
→ reference paper: Gross & Vitells, EPJ.C70:525-530,2010

Asymptotic trials factor (1 POI):

→ Trials factor is not just Nindep, 
     also depends on Zlocal ! 
Why ?
→ slice scan range into Nindep regions 
     of size ~ peak width
→ search for a peak in each region

 ⇒ Measurement uncertainties Indeed gives Ntrials=Nindep.

However this misses peaks sitting on 
edges between regions 

 true N⇒ Measurement uncertainties trials is > Nindep!

N trials = 1 + √
π
2
N indep Zlocal

N indep =
scan range
peak width
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Global Significance from Asymptotics
Principle: approximate the global p-value in the asymptotic limit
→ reference paper: Gross & Vitells, EPJ.C70:525-530,2010

Asymptotic trials factor (1 POI):

→ Trials factor is not just Nindep, 
     also depends on Zlocal ! 
Why ?
→ slice scan range into Nindep regions 
     of size ~ peak width
→ search for a peak in each region

 ⇒ Measurement uncertainties Indeed gives Ntrials=Nindep.

However this misses peaks sitting on 
edges between regions 

 true N⇒ Measurement uncertainties trials is > Nindep!

N trials = 1 + √
π
2
N indep Zlocal

N indep =
scan range
peak width
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Illustrative Example
Test on a simple example: generate toys with
→ flat background (100 events/bin)
→ count events in a fixed-size sliding window, look for excesses
Two configurations:
1. Look only in 10 slices of the full spectrum
2. Look in any window of same size as above, anywhere in the spectrum

Predefined
Slices

Largest excess in predefined slices

Example toy

Largest excess anywhere
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Illustrative Example (2)
Very different results if the excess is near a boundary :

1. Look only in 10 slices of the full spectrum
2. Look in any window of same size as above, anywhere in the spectrum
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Illustrative Example (3)

Zlocal

pglobal(Zlocal)

Normalized 
Zlocal distribution

No LE
E

Search in predefined 
bins: Ntrials = 10

Search 
everywhere:

Searching everywhere gives the 
extra Zlocal dependence

N tr
ia

ls
≈

1
+ √

π
2
N in

de
p
Z lo

ca
l

Search in predefined bins

Search everywhere
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Classic Discoveries (1)

y Discovery 
Lo

g 
sc

al
e!

Z0 Discovery

Huge signal
S/B~50
Several 1000 events

(almost) no 
background

Logbo ok of J. Roh lf, 1983 -05-3 0
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Classic Discoveries (2) y' : discovered online 
by the (lucky) shifters

First hints of top at D0: 
O(10) signal events, 

a few bkg events, 2.4s
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And now ?
Short answer: The high-signal, low-background experiments have been done 
already (although a surprise would be welcome...)
e.g. at LHC:
• High background levels, need precise modeling
• Large systematics, need to be described accurately
• Small signals: need optimal use of available information :

– Shape analyses instead of counting
– Categories to isolated signal-enriched regions

AT
LA

S-
C

O
N

F-
20

17
-0

45

JH
EP

 1
2 

(2
01

7)
 0

24

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-045/
https://link.springer.com/article/10.1007/JHEP12(2017)024
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Discoveries that weren't

 Phys. Rev. Lett. 91, 252001 (2003)

UA1 Monojets (1984)

Pentaquarks (2003) BICEP2 B-mode Polarization (2014)

5.2s

Avoid spurious discoveries!
→ Treatment of modeling uncertainties,
systematics in general

http://www.sciencedirect.com/science/article/pii/0370269384900467
https://inspirehep.net/record/622999
https://inspirehep.net/record/1286113
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CaloGAN
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