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Gluon distributions
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Parton Distribution Functions

Gluon exchanges dominate at small x

NNPDF3.0 (NNLO) g/10
0.9 — -
xf(x,u2=10 GeV?) xf(xu2=10* GeV?)

[NNLO NNPDF3.0 global analysis, taken from PDG2018]
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Wigner distributions: the " Mother Distributions”

[Belitsky, Ji, Yuan, 2003], [Lorce, Pasquini, 2011]

Wigner distribution

W(x, ki, b.)
J[d’by Jd?ky

TMD GPD

f(x, ki) f(x,b1)
Jak. / o
v v
PDF Form factor
f(x) F(by)
Jdx A/
Charge
Q
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Parton Distribution Functions (PDF)

xg (x) o /dz+ ixP=z" ’F_i (z+) F (O)’ P>

Example of a process involving a PDF: inclusive DIS
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Generalized Parton Distributions (GPD)

XG (x, A) o /dz*e’*”‘z+ <P+ % F7 (") F7 ()| P - é>

Example of a process involving a GPD: DVCS
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Gluon distributions
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Transverse Momentum Dependent (TMD) Distributions

777777777777 N [p1+por| = kL] < Mx
—_—

P+ k.

XF (x, k1) o / dz"dz, e ) (PIFT () WIIF T () Wi P)
=0

Example of a process involving a TMD

Photoproduction of an almost back-to-back pair of hadrons/jets
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Generalized Transverse Momentum Dependent (GTMD) Distributions

XF (x, k1) / dz* oz, &P ko) <p - S F @ @ Wi P+ §>

Example of a process involving a GTMD

Exclusive photoproduction of a dijet/dihadron
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Gluon distributions
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Resummation schemes

Moderate x: factorization

©

Application range Q* ~ s, largest logarithm log Q

@ Includes leading powers of Q, all powers of Q/\/s

[

Standard Operator Product Expansion

1(2)1(0) = 3 Co (2, 1F) On (ar)

Divergences in the Wilson coefficient C, are canceled by renormalization of
On

(7

©

Involves standard gluon distributions
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Resummation schemes

9

Low x: rapidity separation

Application range Q? < s, largest logarithm log s

©

Includes all powers of Q, leading powers of Q/+/s

@ Low x Operator Product Expansion

J(2)J(0) = Co (2, Ye) Oree(Ye) + s Cr (2, Ye) Or—toap(Ye) + ...

(7

Spurious divergences in the n-th Wilson coefficient C, are canceled by the
rapidity evolution of O,_1 into O,

@ Involves Wilson line operators
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Large s physics
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Large s physics, from BFKL to the CGC

BFKL

—

DGLAP

nQ?
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Large s physics
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Kinematics

Lightcone (Sudakov) vectors

1 1
n = \/;(1’0l7 1)7 n2 = \/;(1’OJJ _1)? (nl : n2) =1

Lightcone coordinates:
X = (xo,xl,xz,x3) - (x",x,%)

xt=x_=(x-m) x =xy=(x-m)

Gluon distributions at the EIC Large s physics Renaud Boussarie 13



Large s physics
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Rapidity separation

~pny

Let us split the gluonic field between "fast” and "slow” gluons
AP (KT kT k) = AY(lkT| > e"pT kLK)
+ Bk < e"pt kLK)

e"=e Y x1
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Large s physics
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Large longitudinal boost to the projectile frame

Shockwave approximation
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Large s physics
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Effective Feynman rules in the external shockwave field

The interactions with the external field can be exponentiated

Azt ~0 Azt ~0 Azt ~0

-y -~~~ 5§~~~ —y ——— TL
q qQ q g
o] o] o] o]
S S S o]
S S S o]
o o o 3
S S S o]
&) &) &) Q)
g g g e}
G igb- G igh- G igh- G igh- G
—_—————— P oo
.
G Pe'd G
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Large s physics
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Quark line in the external field in momentum space

Wilson lines
+oo . .
U = Pexp [ig/ b, (z,Z) dz; } ., U"(p) = /deZZ e Py
Effective quark line
_ dipy gz i PSR () %
u(pg, z = S € Pa
( q 0) (2ﬂ_)
_ ~ PgY” + PgL — PrL
Xty [0 (~2) + (2m)7 8 () 6 (&) | PP
Pq
20 Pq

B

Exchange in t-channel of an effective off-shell particle
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Factorized picture

(Pl I

Factorized amplitude

Z1

4= [P 5P g 0@, ) (P U) - NP

Dipole operator Z/I,-}7 = N%Tr(UZ Ugf) -1

Written similarly for any number of Wilson lines in any color representation!
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Evolution for the dipole operator

S5 Y R

B-JIMWLK hierarchy of equations
[Balitsky, Jalilian-Marian, lancu, McLerran, Weigert, Leonidov, Kovner]

81/{1'72 ach/ Z12 7
—= = dZ3——=5 [U7} — U + UL U
877 o2 Z3 123 223[ 12 13 32]
ousUsy,  _
on -

Evolves a dipole into a double dipole
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The JIMWLK Hamiltonian

Hamiltonian formulation of the hierarchy of equations

For an operator built from n Wilson lines, the JIMWLK evolution is given at
LO accuracy by

0

8_n [U;IU;Z,] = i Hj - [U;IUZ%] )

i,j=1

JIMWLK Hamiltonian

zl z a a a a a a a
Hi = 22 z/dk B2 (3, 77y 4 TiRT e — (T2 TEr + T TER),

lk kj
T2 U(z) = TPU(z1),  TRUi(zi) = Ur(2) T
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Large s physics
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The BK equation

Mean field approximation, or 't Hooft planar limit N — oo in the dipole
B-JIMWLK equation

W<m . w<+
[Mueller]

= BK equation [Balitsky, 1995] [Kovchegov, 1999]

8(“77 > s NC =g 22 m U 4 M M
Gl = S [ 2 () + 0d) — ) + 04) Q4]

BFKL/BKP part Triple pomeron vertex

Non-linear term : one type of saturation

Non-perturbative elements are compatible with CGC-type models
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Large s physics
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Practical use of the formalism

@ Compute the upper impact
factor using the effective
Feynman rules

@ Build non-perturbative models
for the matrix elements of the
Wilson line operators acting on
the target states

@ Solve the B-JIMWLK evolution
for these matrix elements with
such non-perturbative initial
conditions at a typical target
rapidity n = Yp. May require
adjustment.

@ Evaluate the solution at a typical
projectile rapidity n = Y/, or at
the rapidity of the slowest gluon

@ Convolute the solution and the

impact factor
Gluon distributions at the EIC

Large s physics

AVAVaVAVAVAYA

ANAN
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A= [dz..dzZ, &(Z, ..., 7))
><<P/‘Ugl...Ugn|P>

Exclusive diffraction allows one to
probe the b, -dependence of the
non-perturbative scattering amplitude
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incompatible nature of the distributions

Two different kinds of gluon distributions

Moderate x distributions Low x distributions
GTMD, GPD, TMD, PDF... Dipole scattering amplitude
(POIFTWF~ W|P) (POtr(ULUL)|P)
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Link from low x to (G)TMD distributions

Gluon distributions at the EIC
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Gluon Wigner distribution

Naive Gluon Wigner distribution

.. N d2A (7R d +d2 o s
Wbk b= (27r)§ () / 2167r—3zl ¢~ = —i(k)

(e8I (5 e () 2)
Wigner Eourieg GTMD

dztd?*z, Pzt —i(K-2)
1673

(-t (D Gl )

Not gauge invariant objects!

xGI(x, k, D) =
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Gluon Wigner distribution

Two ways to build gauge links
[Bomhof,Mulders, 2008], [Dominguez, Marquet, Xiao, Yuan, 2011]

ot i Dipole distribution

Te[F(—z/2)UF FH(z/2) U]

Weizsacker-Williams (WW) distribution
Te[FH (—z/2) UM FH (z/2) U]
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Staple gauge links in the shockwave formalism

[Dominguez, Marquet, Xiao, Yuan]

Consider the derivative of a path-ordered Wilson line, denoting
X
X% ]z = Pexp[ig/ dx b (xT, )]
X
For a given shockwave operator Uz = [—00, +00]z

o'z = ig/dx*[—oo,x*]; FHi(x™, %) [x", +oo]x
8jU; = —ig/dx+[+oc.,x+]; FH(xt, %) [x", —oo]g

(8'UL) Uz = g2/dx+[+oo, xFz FH(x*, %) [x", +o0]z
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The dipole (G)TMD: operator
Operator involved in the dipole case
TOUNOUL] = & [ o o TP ) b+l oo T

X F+j(X2+a)?2)[X2+7 —OO];Z[—OQ7X1+];1

ot Ty Dipole distribution

Te[F(—z/2)UF FH(z/2) U]

Weizsacker-Williams (WW) distribution
Tr[F ™ (—z/2) UM FH(z/2) U]
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The WW (G)TMD: operator
Operators involved in the WW case

T{OULUs (UL U] = g [a s Tols+ocl oo ]

X FH (x5, 400z [+00, % |5 FP (x4, %)

ot Ty Dipole distribution
Te[F T (—z/2)UF FH(z/2) U]

Weizsacker-Williams (WW) distribution

Te[F T (—z/2)UF FH (z/2) U]
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The actual low x building block is the
derivative of a Wilson line

An equivalence is obtained by rewriting lines in terms of their
derivatives
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Inclusive low x cross section

Inclusive low x cross section = TMD cross section
[Altinoluk, RB, Kotko], [Altinoluk, RB]

of

o =Hi (ki) ® (P ’F*"WF*J’W‘ P)
FHF (ko k) ®© <P’F*"WgsF*JWF*kW‘ P>
+H (ki ks, k) ® <P ‘F*"WgsF*f WgsF*kWF*’W‘ P>
Renaud Boussarie 31
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Exclusive low x cross section

Exclusive low x amplitude = GTMD amplitude
[Altinoluk, RB]

HI (kii, kor) @ (P |F"WFW|P)

Every exclusive low x process probes

> a Wigner distribution!

040000000000000000000R00Q000000

= /
[ evevesavasesaaod
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NLL high energy Wigner observables
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One-loop correction to processes probing
Wigner distributions

Gluon distributions at the EIC NLL high energy Wigner observables Renaud Boussarie 33



NLL high energy Wigner observables
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Exclusive diffractive dijet production

Gluon distributions at the EIC NLL high energy Wigner observables Renaud Boussarie 34



NLL high energy Wigner observables
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Exclusive diffractive dijet production

NLO corrections to this process probing Dipole Wigner are known
[RB, Grabovsky, Szymanowski, Wallon (JHEP)]
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NLL high energy Wigner observables
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Divergences

All divergences cancel: factorization holds at one loop

@ Rapidity divergence p; — 0 (spurious gauge pole in axial gauge)
¢ Removed via JIMWLK evolution
9 UV, soft divergence, collinear divergence

o Cancels between real and virtual corrections, along with
renormalization

@ Soft and collinear divergence
@ Removed via a jet algorithm

Thus the NLO cross section for this process which probes the
Dipole Wigner distribution is finite
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NLL high energy Wigner observables
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Exclusive diffractive p; production:

NLO corrections to a twist 2 process
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NLL high energy Wigner observables

Exclusive diffractive production of a light neutral vector meson

[RB, Grabovsky, lvanov, Szymanowski, Wallon (PRL)]

T - -l
- - O ~CAD

A: ey fv&g d dd P1 dd P2 ddp3
e J, Dt )/ (2m)? (2m)? (27)°

x (2m)¥*t s (pv —p3) 8 (Bv — By — Pr — Po — P3)
x [(9F 0 i, ) + G0y (x, i, £2)) U, (2m)76(52)

+ O, B, Py ) Wi

Probes gluon GPDs at low x, as well as twist 2 DAs
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NLL high energy Wigner observables
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Divergences

Divergences

@ Rapidity divergence p; — 0 (spurious gauge pole in axial gauge)

o Removed via JIMWLK evolution

9 UV, soft divergence, collinear divergence

@ Mostly cancel each other, but requires renormalization of the operator
in the vacuum-to-meson matrix element — ERBL evolution equation
for the DA

We thus built a finite NLO exclusive diffractive amplitude with a
Wigner distribution and a twist 2 DA

Gluon distributions at the EIC NLL high energy Wigner observables Renaud Boussarie 39
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What can low x results tell us about gluon
distributions?

1- Saturation effects

Gluon distributions at the EIC
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Saturation effects

Saturation as understood at small x

Two origins of saturation effects

@ Large gluon densities = Gluon recombination effects

Arises from non-linearities in the evolution equation

@ Large gluon densities = Multiple gluon scattering effects

Arises from the exponentiation of interactions U, = Pe’ Ia-

Gluon distributions at the EIC Correlations and saturation Renaud Boussarie 41



Correlations and saturation
0000000000000 000

A new understanding of saturation

"Saturation” effects in terms of (G)TMD distributions

@ Large gluon densities = Gluon recombination effects
Avrises from non-linearities in the In(s) resummation equation
@ TMD gauge links = multiple soft scattering effects
Kinematic saturation: small k; = Sivers effect!
@ Large gluon occupancy number = large gsF ~ 1

Genuine saturation: genuine twist corrections are enhanced on a dense target

Two types of saturation are not specific to
small x physics

Gluon distributions at the EIC Correlations and saturation Renaud Boussarie
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Kinematic saturation

"Saturation” from a TMD gauge link

by ~1/k ~1/Q,

2 \ .

g [d'bs (b)) (PIF (UF O ull|P)

“/ CeBEEEE
3333:

Expected in any process involving a gluon (G)TMD
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Correlations and saturation
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Kinematic saturation

"Saturation” from a TMD gauge link

Link length ~ 1/|k |, hence effect suppressed at large k.

14 T
7
12 2
Faor
b )
A0 b ¥ e whh, b Hyy
= [N N
5 “‘;&w\
s
5
=
X6
=
= TP - Po—
T 4
2
o g Syt
P
0.01 0.1 /16 /8 T/ 1
ak,

[Marquet, Petreska, Roiesnel ; Marquet, Roiesnel, Taels]

Observed by Golec-Biernat and Wiisthoff?
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Genuine saturation

Saturation as an enhancement of genuine twists

Large gluon occupancy = gfF ~ 1

g / d*bid*bad*b's (by) & (by ) 5 (b~ ) eltlarbrtitke:t2)=i(kt)

(P|F~ (Ul eF ()l o (Ui, | P)

% by, b’
(PIP)

Expected in any process involving dense targets
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Distinguishing saturation effects

Different kinds of saturation occur in different kinematic regions

ki /Q

@ Kinematic saturation occurs at small k, : gauge links shrink at large k.

@ Genuine saturation is a twist-suppressed O(k/Q) effect: it is suppressed
at small k|

@ Color Glass Condensate results lead to genuine saturation effects being
enhanced on heavy targets
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What can low x results tell us about gluon
distributions?

2- Cold nuclear correlation effects

Gluon distributions at the EIC
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Angular correlation

Cold nuclear correlation effects

CGC correlation Wigner correlation
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Dipole GTMD and elliptic flow

The dipole GTMD can produce initial state correlations
[Hatta, Xiao, Yuan ; Hagiwara, Hatta, Xiao, Yuan ; lancu, Rezaeian]
Inspired by [Kopeliovich et al ; Levin, Rezaeian]

For small k,
G(Ibol,ki]) 2= Go(|br|,[kv]) +2cos (2¢5k)Ge (IbL], kL)

The cos(2¢) term (elliptic Wigner), leads to angular correlations in observed
transverse momenta.

For exclusive processes, cold nuclear effects are the only expected correlation
effects.

= Dipole Wigner = initial state origin of elliptic flow in small systems?
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Elliptic flow from TMDs

Elliptic flow in inclusive processes can arise from polarized TMDs
[Boer, Mulders, Pisano], [Metz, Zhou], [Dominguez, Qiu, Xiao, Yuan] , [Dumitru, Skokov]

i 4 &Y Kkl S0
(PlF@wirow] Py Srw+ (4 -5 ne)

(PIFWFW|P)y x H = wF (ki) + vacos (2¢)H (k1)

prL+por = ko

“DOOOOOTO0

TMD
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What can low x results tell us about gluon
distributions?

3- Constraining GPDs where they would not
factorize

Gluon distributions at the EIC



Correlations and saturation
000000000000 e0000

Twist 3 DVMP

Full GPD+DA colinear factorization for DVMP breaks at twist 3

2 solutions

[Ahmad, Goldstein, Liuti] [Anikin, lvanov, Pire, Szymanowski, Wallon]
[Goloskokov, Kroll] [RB et al]
Full wavefunction for the meson Full GTMD for the target

Gluon distributions at the EIC Correlations and saturation Renaud Boussarie
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Exclusive low x cross section

Exclusive low x amplitude = GTMD amplitude

HI (ki ko) @ (P'|F'WFW/|P)
Twist ~ power of ki, /Q or ko1 /Q in H.
Leading twist
#Y (0L, 01) ®/d2kud2ku (P'|FF'WF~W|P) = o (GPD)
Next-To-Leading twist
H ® I(GPD) — oo

By not expanding in twists, low x physics restores factorization with GTMDs
where GPDs would not work. At large s and large Q, a low x description of a
twist 3 process is the closest thing to constraining higher twist GPD we can get.
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How can gluon distributions help up for low
x analysis?

Negativity of low x cross sections

Gluon distributions at the EIC Correlations and saturation Renaud Boussarie 54
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Negativity of low x cross sections

[Ducloué, Lappi, Stasto, Watanabe, Xiao, Yuan, Zaslavsky, Zhu]

@ One-loop predictions for forward particle production in pA collisions lead
to negative cross sections at large p_ .

@ Origins: Coulomb tail in the evolution equation ; large colinear logarithms
log Q

@ The issue was postponed to larger p; by using a non-local factorization
scheme [lancu, Mueller, Triantafyllopoulos], [Ducloué, Hanninen, Lappi,

Zhu]

@ Improving the JIMWLK evolution with colinear logarithm resummation
helps a great deal [lancu, Madrigal, Mueller, Soyez, Triantafyllopoulos]
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Negativity of low x cross sections

Moderate x results for TMD evolution can help us resum
colinear logarithms

o First, resum log(s) via regular JIMWLK evolution
H @0 > H @0
o Then rewrite the result into a TMD form
M@0 =) HY o F)
o Use renormalization of the TMD to resum log(Q)
Foe = Fo(ur)

o Use the Collins-Soper-Sterman (CSS) framework to resum
Sudakov logarithms log(k, /Q)

o (Use previous low x results [lancu, Mueller, Triantafyllopoulos],
[Mueller, Xiao, Yuan] in check to avoid double counting)
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Conclusion
o

Conclusion

(7

We finally unified moderate x and low x distributions

[

This allows us to use low x results to constrain gluon
distributions

[

We provided full NLO predictions to probe Wigner
distributions

@ We also reinterpreted the notion of saturation and the nuclear
correlations

o It also allows us to use moderate x evolution to improve low x
predictions

Gluon distributions at the EIC Conclusion Renaud Boussarie 57



Weizsacker-Williams Wigner distribution at

low x
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The Weizsacker-Williams gluon GTMD at small x

WW gluon GTMD

) BN
xGij (x, K, A) = o /d2b1d2b2e A= K-(b1=b2) <TI" [(3,‘Ugl) Up, (81'ng) sz] >;
Symmetry relations:
gU(KvA) = gﬁ(_KvA) = g;(_Kz _A)

Then the decomposition is much richer than in the dipole case:

KiK; 65\ K? NA; 6y A?
Gi(x, K,A) = 5ijg1+( K2J J)W%—&—( A2f—?f)mg3

KA — KA
+ (71/\”2 . ) Ga

[Boer, van Daal, Mulders, Petreska]
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Consider a quadrupole Tr(UJ Uy U] Us) such that 1 ~ 2, 3 ~ 4.

U2Jr Ui = Ugl+r1/2Ub1*’1/2 = _r{(aiugl)ubl

UlUs = U} . 12U, —1jo = —r3(0;U},) Us,

SO
Tr(UJ ULUJ Us) ~ A iy Te[(0:U]) Us, (0;U) ) Us,]

= The Weizsacker-Williams gluon GTMD at low-x can be probed in exclusive
processes with a quadrupole made of two small dipoles at the amplitude level.
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The Weizsacker-Williams gluon GTMD at small x

Typical WW-probing process
Production of a pair of heavy quarkonia

At leading approximation, the WW GTMD encodes the exchange of a gluon
pair in the t channel. For connected diagrams to exist, we thus require the

gg — M transitions to exist. Thus only C™ quarkonia are allowed: 7, x
mesons.

Gluon distributions at the EIC Renaud Boussarie
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Dilute process

Exclusive production of a pair of 7.
[Bhattacharya, Metz, Ojha, Tsai, Zhou]

< Dilute Wigner >

< Dilute Wigner >

Only valid in the dilute approximation, otherwise factorization could be broken
by entangled gauge links
No gauge links: does not distinguish Dipole and WW
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Hybrid process

Diffractive production of a forward pair of CT quarkonia
[RB, Hatta, Xiao, Yuan]

Forward production allows factorization to hold in the hybrid scheme, and
allows to be inclusive in the projectile remnants
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The Weizsacker-Williams gluon GTMD at small x: hybrid factorization

Forward production = collinear factorization on the projectile side
Multiple scattering: Double PDF

2

<P ’G“' ctigt ¢t

Spin decomposition
i’ — it (e e\ L (e e ot ()" e
T2 g -5 Ag + og ,

thus 3x3 types of double PDFs: unpolarized (5174), longitudinally polarized
(eﬁ,) and linearly polarized (rﬂ/”"’"l).
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Generic cross section

Full factorized cross section

do (Ml, MQ)
dY1dY>d?Ad?K

- 16m§m§l§/;1(xlil§ — 1)2 <OM1 (251+1LL1)> <OM2 (252+1L;J2)>

x / d’q [5”’5ﬂ"’fgﬁg (1, %2, q) — i6" & Fyng (31,52, @) + 28" F2's (31,2, q)

—ieﬁ 6‘” Fre.g (X17X27 q) — Eii 6‘” Frg,ng (X17X27 q) — 2I'€ﬁ ‘Fggtdg (X17X27 q)
250" FI (31,32, @) = 2iel Fliy g (31,32, q) + 4F il (1,5, q)]

x4 (M) T (MG (K — 2 8) <6 (K + 2, a),
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Simplifications

Let us assume |q| < |K]|
Then the dependence on g disappears in the hard parts and in the GTMD

= we absorb it into the double PDFs.

Thus what we actually need are Integrated double PDFs which we define as

fal,a2(X17X2) = /dzqfa1,az(xlax27q)

Note that single-linearly polarized double PDFs integrate to 0
Indeed the only symmetric and traceless tensor built with only one transverse

scale is given by
qmqn 6mn
< @ 2 )

which integrates to 0.
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Generic cross section

Full factorized cross section

do (Ml, MQ)
dYidY>d?Ad?K

~ 16m§m;/§/;1(x/i/c2 - 1)2 <(’)M1 (251+1L}J1)> <OM2 (252+1L§J2)>

X [5""’5ﬂ"’fg,g (x1,32) — i6" ' Fypg (1, x0)+20" 7'

g,0g (Xlt XQ)

—i€" 8" Fagg (x1,%) — € & Fagng (x1,%)—2ic" FJ, 5, (x1,%)
+26/7/}"(§';g (xt, X2)72I'6j/ }T%.Ag (x1, x2) + 4]—"5/’le (xt, Xz)]

8,08

<M (M) T (Ma)xGHE (K, B) xG¥ " (K, ),
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Simplifications

Getting rid of the longitudinally polarized integrated double PDFs
Defining ¢ as the angle between A and K, we will actually observe the angular
averaged cross section:

@ d(T (M1, MQ)
21 dY1dY2dA’d?K

= 8m?mg()lfgz)l;2§ — 1)2 <OM1 (251+1L1J1)> <OM2 (252+1L§J2)>

X [5“ & Fyg (x1,%)—i6" & Fyng (x1,x0)+26" Fo

g,0g

(x1,x2)

o I -
R n N/ = i}
—i€" & Fagg (x1,%)—€" € Fag,ng (x1,x2)—2ic FRe.se

o R I
4267 Fsg g (x1,22)=2i€" Fig png (x1,%2) + 4.7:gg‘;§g (xa, X2)]

(x1,x2)

X (M) T (Ma)xGH (K, ) xGH 1 (K, ),
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Simplified generic result

Simplified and averaged generic cross section

/ﬂ dO’(Ml, Mz)
27 dY1dY>d A2d?2K

2
Qg X1 X2

~ BT AN (N2 — 1)2 <(’)M1 (251+1L}J1)> <OM2 (252+1L§J2)>

% [6,'/’517’}—“% (x1,%) + 4}-ii’¢1'f/ (xl,XQ)]

og,08

X1 (M) T (Ma)xGH (K, B) xG¥' ™ (K, B),
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Perturbative parts

I—Igi’,kk’ (n) = 5ii’5kk’ _ 6ik’6i’k7
o 5/!(5/,/(,
|—|u ,kk (XO) _ 3
1 mf
P 6” Ak , Ak/
|—|1 ,kk (Xl) — 2m (Kk + _) <Kk + T) ’
1
I—Iii’,kk’ _ 2 6ii’5kk’ 6ik5i’k’ 6i’k5ik’ 5”, K- AF Kk’ Ak’
= SO kg (K Y
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A few cross sections - 1

(x1x1)

32m?m§‘i‘2$§ —1y? x1eFg.g (X1, X2) <(’)Xf11 (3P11)> <0Xf21 (3P11)>

K> 2 A2 K2 K2
(g1+ 2M2g) - oz (gl+ 2M29> (gl+2M2g )]
(x1x0)

e Fes () (o () ()
17720 ¢ c

K2 \° A?
(g1+ 2M2g) + 1K (Qf e <gz 892g4+8g§>>:|
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A few cross sections

(x0x0)

e (Ove (7)) (00 (7))

K22
x{xmfg,g(xm) (g 4M492 S gi)

2
+axixoHsg,s¢ (X1, x2) {gf - A <g1g3 4’;/12 92>} }

(xon)
4.2
16m1m23l\olé4)(<N2 1) <OX° (3P3)> <O" (15&)>
{X1X2fg<,g (1, x2) (gf 4M4g2 ’;ij‘fgf)

2
—4x1x0Hsg,5¢ (X1, %2) {gf A (glga K gz)}}

ane
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Possible improvements

Issues and solutions

@ Possibly large pollution from NRQCD octet contributions

Consider the fully exclusive hybrid case: GPD+Wigner

? % corrections to the hard part

Resum (kinematic) twists

@ Requires two C* quarkonia: experimentally challenging

No solution: consider other processes.
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Future EIC studies

Suggestion of a theoretically cleaner and experimentally easier process

(credits to [Feng Yuan])
No required hybrid factorization ansatz ([RB, Hatta, Xiao, Yuan]) nor dilute

kinematics ([Metz et al])
J/psi and a C* quarkonium are experimentally easier to observe than double

C* quarkonia.

Gluon distributions at the EIC
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Twist 3 production

Production of a transverse light vector meson

Non-forward and non-dilute extension of
[Anikin, Besse, Ivanov, Pire, Szymanowski, Wallon]
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Previous study

Previous works [Anikin, Besse, Ivanov, Pire, Szymanowski, Wallon]

9 Full v+ — p7 impact factor, but

@ Linear BFKL regime only
o Forward t = 0 case only

@ Hence No v/ — pr transition allowed

9 Proved the equivalence between two major schemes for collinear
factorization at twist 3, but in a process-dependent way

@ Required interesting algebra to restore QCD gauge invariance, but no deep
understanding for the origin of invariance breaking in the first place

Gluon distributions at the EIC Renaud Boussarie
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Light Cone Collinear Factorization
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Collinear factorization
Light Cone Collinear approach

The Light Cone Collinear Factorization approach

Momentum factorization

@ Define a Sudakov vector n such that p- n =1 and write
d*pg = [dxd*pg 6(x — pq - n).
Taylor expansion of the hard part H(pq) along the collinear direction xp:

(7

H(pg)e #S(z)

9H(pq)
oply

(pg —xp)e P 2S(z) + ...

Pq=xp

= H(xp)e P*5(z) +

. —_
pY BE derivative of the soft term: [ d*z e "% (p(p)|v(0) i 0, 1(2)|0)

©

@ Standard derivative = need for 3-body contributions to combine into a
covariant derivative.
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Twist 3 Distribution Amplitudes

Required DAs for pr production at twist 3 in LCCF
@ 2-body DAs

(p(P) ¥ (2) Y (0)] 0) = mpf, [01(x) (€} - 1) pu + @3 (X)epT,]
{p(P) % (2) 1s7ut (0)] 0) = mpfricoa (x)eurpscytp’n’
(p(P) [5(2) D o0 (0)] 0) = myfoiear (picira

- = . -
<P(p) W(Z) Y5 Yui O oﬂﬁ(o)‘ 0> — mpfyipar (x)pucarsseprp’n’

9 3-body DAs

{p(P) [ (21) Vu8A« (22) 1 (0)]| 0) — m,F" B (1. %2) pueyra

(p(P) | (21) 157u8A (22) ¥ (0)] 0) = m, D (31, %) pucarsse ;7P n’
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Minimal set of DAs

7 required DAs

@ Equations of motion: Dirac equation

((iD0a) (0) 5 (2)) = 0. (¥ (0) (1DT5) () = 0
@ Leads to two equations
x1p3 (x1) + Xipa (xa) + 17 (x1) + par (1)
+ /de [43‘/3 (x1,%) + 3D (Xl,xz)] =0

X103 (x1) — x1pa (x1) — @171 (x1) + war (x1)
—/dX2 [C3VB(X2,X1) - C3AD(X27X1)] =0

7-2 required DAs

Gluon distributions at the EIC Renaud Boussarie 80



Minimal set of DAs

7-2 required DAs

@ n-independence. n appeared in three constraints:
o Lighcone direction of the separation z: z = An
o Definition of the transverse polarization €, - n =0
@ Chosen gauge n-A=0
9 Leads to 2 additional constraints for the DAs, plus the gauge invariance
condition.

7-4 required DAs

o(x) < 2-body twist 2 correlator
B(x1, x2) < 3-body genuine twist 3 vector correlator
D(x1, x2) <+ 3-body genuine twist 3 axial correlator
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Covariant Collinear Factorization
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Collinear factorization

Covariant Collinear approach

@ Work directly on the operators, with gauge invariant light ray operators

@ 2-body correlators

P[P (2) (2,019 (0)] 0) = fom, [—ip* () - 2) h(x) +="” ()]

p) |¥ (2) [z, 0] vsvut (0)| 0) — ~ fmpeuaﬁtssplp g7 (x)
9 3-body correlators

p) ¥ (2) [, tz] vogGp (t2) [t2,0] % (0)] 0)

— —imyfy) Pa (Puey i — Puepi) V (31, %)

(p(p)[5(2) 2, t2] 7058 G (t2) [£2,0] 4 (0)| 0)
— _mpf;‘)pa (puE:Lu - PVE:;L;L) A(x1, x2)

@ Equations of motions = only 3 DAs are required
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Matching at twist 3 accuracy

[ LCCF [ CCF |

03 (%) g (x)

T (%) h(x )—h( )

¢ (%) 1% (%)
Z\—(X) 4gl ( )

B (xq, Xg: Xg) %
—A xq,xa;Xg

D(Xq,Xa) ﬁ

A process-specific comparison was done previously [Anikin, lvanov, Pire,
Szymanowski, Wallon]

A completely generic proof exists [RB et al, to be published].
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What changes in the CGC rules

Effective CGC Feynman rules for fields

The recursion to exponentiate slow gluon scatterings into a Wilson line only
starts at order g

Agr (20) | <o = A" (20) — 2i/dDZ3 0(z) 6% (zx0) (Uz%a - 5ba> F7t (z)
T (@) g co = 0 () + a8 (&) T (2) (Us — 107" 6 (aw)

weff (Zo) zar<0 = 1/} (ZO) — /dD226 (22+) G(202)7+1/j (ZQ) (UZI2 — 1)
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2-body diagrams

Natural 2-body CGC diagram

[z o 2, 5) (- (U] (o4 0)

Contains monopole contributions
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2-body diagrams

Antiquark monopole 2-body diagram

/d222 ®F (2) Tr[(Uf — 1)] (p|d¢] 0)
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3-body diagrams

Natural 3-body CGC diagram

/ d*Ad*Hd* % Sy (7, 2, 2) TY[(Ur — 1) (UL -1)£°)(U5" — 6°°) (p [ Av| 0)
Contains dipole and monopole contributions

Double-dipole term even at tree level = Great sensitivity to saturation
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3-body diagrams

3-body (gg)-dipole diagram

AL = /d222d253 % (2, 2) Te[t*(UF — 1)t°)(U35° — 6°°) {p | DAY 0)
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3-body diagrams

3-body (gg)-dipole diagram

A% = /d221d222 &3 (21, 2) Tr[(Ur — 1)t°(U] — 1)¢°)6% (p [P AY] 0)
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3-body diagrams

3-body (g)-monopole diagram

AY = /d2”¢3" Z) Te[(Ur — 1)t°¢°)6° (p | Ay 0)
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3-body diagrams

3-body (g)-monopole diagram

o A 5

A = /d 2 02 (2) Te[e ) (U2 — 6°) (p | Ay 0)
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Cancelling the 2-body monopoles
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2-body diagrams

Antiquark monopole part of the natural CGC diagram

@ Monopole part of the quark line
T (@) g co = B ) + [d°208 (&) T (20) (Us 1) 7" G (z0)

@ Simple algebra allows one to get

— - —
dP —it) b 9 yHyt Cigz
/dDZ1/—qD6 (Zr) ik (jl)'o + L (Zl) '7;7 > e (g-z10)
(27) (- %2) 20+ (0 - 5:2)
@ Thus one term contributes to a 2-body monopole contribution, and (Dirac
equation) the other term contributes to a 3-body monopole contribution.
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2-body diagrams

Sum of the 2-body antiquark monopoles

Using the fact that the non-perturbative collinear matrix elements do not
depend on z* variables at twist 3 accuracy ...[censored technicalities]... we get
the sum between the natural 2-body antiquark monopole diagram and the
2-body antiquark monopole part of the natural CGC diagram
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2-body diagrams

Sum of the 2-body antiquark monopoles

Using the fact that the non-perturbative collinear matrix elements are at most
linear in z,, the sum cancels iff

1 1
2 - 2 =0
(Py—d) &2 (Py—d)
P~ 2(p5—a") 29+ P~ 2(pi—q7) -
1o} 1 1
B = - 2 =0
el Py — (7,9 -a Py — (Py—q)
Ty PTG ) |
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Cancelling the 3-body unnatural dipoles, and

monopoles
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3-body diagrams

"Unnatural” 3-body diagrams
O (3 5) (| §40]0) = [ 500, (5,2 5) (o] $AV] 0) + Twist 4
b (22, 23) (p [PAY]0) = /le Goze (21,22, 25) {p |0 AY| 0) + Twist 4
O (5. 5) (o[ F40]0) = [ 05 0cs, (5,2 5) (| PAV| 0) + Tist 4
© () (p|[740]0) = [ 505 0, (5,2 5) (o] $AV] ) + Twist
o, (1) (p |0AY|0) = /d222d223 Poag (71, 22, 25) {p |t Ap| 0) + Twist 4
Hence the 3-body total from 3-body diagrams

AP = /d25d222d233 O, (2,2, 2) (p [FAV] 0)

X [Te(Urt® Ut U3° — Te(t° US £°6°7))
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3-body diagrams

Total from 3-body diagrams
AP = /deadezd% O, (71, 7,2 (p [FAV] 0)
X [Te(Urt® Ut U3° — Te(t° US £°6°7))
"3-body” antiquark monopole from the natural 2-body diagram
oF (8) = [ d5d'% Oy (21 5,5) + Twist4
Sums up to a gauge invariant amplitude
AP = /d22’1d22’2d22§, O (71,5, 7)

x [Tr(Ust®Ufe7) U3® — Ce] (p [P AY| 0)
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QCD gauge invariance

Final amplitude
A= /d221d222 o2 (z,2) [1r (LU} - N
+ /d221d22’2d22’3 g (7,2, 2) [Tr (Lt UP) U3° - ¢
Expansion in Reggeons in the dilute limit: (Reggeon momenta qi, ¢»)

Pprr, = /d221d222 q)ig (21, 2) (ef(al-za) _ ef(al-zl)) (ef(az-za) _ ef(az-zz))

- /d2z~1d22~2d2z~3¢3gg (2,2, 73) [Nc (ef(m z) _ ef(al»zn) (ef(az»23> _ ef(ﬁz'fz))

_ (NENC 1) (e’(ql'ZZ) _ e’(ql'Zl)) (e’(QZ'Zl) _ ef(qz'Zz)):|

Obviously gauge invariant in the BFKL sense: ®ggxi = 0 for g1 = 0 or g2 = 0.

In the dilute, forward limit, our result matches the previous BFKL results
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