

die Kunst

über

in der Wissenschaft

Latest results from The XMM-XXL survey

The cosmological analysis of X-ray cluster surveys

Marguerite PIERRE Service d'Astrophysique du CEA

Outline

- 1. Reminder: clusters and cosmology
- 2. The XXL survey
- 3. Critical for cosmology : the cluster selection function
- 4. Results from the XXL survey
- 5. Forward cosmological analysis by modeling observable parameters only

1. Clusters and cosmology

Cosmology ?

Field of astrophysics that studies the universe as a whole

(density, finite-infinite, structure, topology, nature and amount of 'dark' material, fate . . .)

• Science of "empty fields"

An empty field:

Long exposures with a large telescope \rightarrow

The sky in the optical band

The center of A2218 as seen by the HST z = 0.176

The dark matter acts as a lens

The shear measurement allows us to measure (total) cluster masses

X-ray image of A2218

T ~ 50 million degrees

Why to compare the structure of the universe at different epochs?

The structure of the universe

for different cosmological models

Simulations: Dark matter only

The VIRGO Collaboration 1996

z=3

z=1

z=0

Most massive objects in the universe => cosmology

FILM

EVOLUTION OF INTER-GALACTIC GAS

blue : cold red : hot box size : 50 Mpc

By HORIZON – Mare Nostrum

Why searching for clusters in the X-ray band ?

- The source density is much lower than in the optical or in the IR
- Projection effects are negligible
- Two types of sources:
 - pointlike : AGN (~ $300 / deg^2$)
 - extended : <u>clusters of galaxies</u> ($\sim 10 / \text{deg}^2$)
- A first mass estimate can be obtained thanks to the gas temperature

To make things clear... and exciting!

- In galaxy clusters, the mass of galaxies is neglible:
 - Galaxies 5%
 - Gas 15%
 - Dark Matter 80%
- Mean density of the ICM is ~ 1 atom/liter
 - 5 times emptier than the best vacuum obtained on Earth
 - But the total gas mass of a cluster is $\sim 10^{14}$ Mo!
- With XMM, we collect ~ 1 cluster photon per minute for clusters at z ~ 0.5
 - Typically 100-500 photons per cluster in 10 ks
 - Less than the number of galaxies in clusters!

X-ray emission from clusters

Background image : CFHT i Blue contours : XMM

XXL in short:

1) FIND

~ 500 X-ray clusters

in 50 deg²

2) DO COSMOLOGY

X-ray clusters ~ 5% of the source population

2.a The XMM-XXL survey lay-out

XMM

The largest ESA telescope 0.1-10 keV (~100-1 Å)

Launched: 1999

collect and focus X-ray light

3 X-ray telescopes

58 nested mirror shells

The XMM PSF as function of off-axis angle

Photon counting mode. we register:

- Arrival time
- Position ٠
- Energy

The XXL survey in short

The largest XMM programme to date:

- 6.9 Ms of XMM time
- ~ 100 collaborators
- 1st series of 15 papers published in 2016
- 2nd 20 2018
- ~ 500 clusters
- Over 20 000 AGN

Primary goal : cosmology with the O<z<1 clusters

XXL-N 25 deg²

XXL-N

XXL-S 25 deg²

23h30 -55d00

within the SPT 100 deg2 Deep Field

XXL-S

0.59 0.88 1.4 2 2.9 3.9 5.2 6.6 8.2

0.59 0.88 1.4 2 2.9 3.9 5.2 6.6 8.2

Not a flux limit !

2 clusters with same flux

detected not detected

~ surface brightness limited

2.b The XXL survey selection function

The 2-step XXL pipeline

- 1. Source detection on the wavelet filtered photon image
- 2. Each source is examined by a LH analysis. Two models are tested:
 - 1. PSF: normalisation
 - 2. Extended source: $\beta = 2/3$, r_c, normalisation

➔ The source selection is made in the pipeline parameter output space

The cluster selection process

2 classes of extended X-ray sources

Green = AGNs

Magenta = clusters

Red = Spurious

Class 1 (C1): ~ 4/deg² no contamination

Class 2 (C2) – fainter objects:

 \sim 5 more / deg²

+ 5 false det.

50% contamination

Pacaud et al 2006

Detection rates from analytical simulations

Class 1 sample : < 5% contamination

Pacaud et al 2006

XXL clusters of galaxies and their optical counterpart (CFHTLS)

An XMM image (10ks) of an 'empty field'

An XMM image (10ks) of an 'empty field'

Working with these data: difficult !

: misleading (Poisson statistics)

: ambitious

... but feasible

Summary

the selection function is solely based on output pipeline parameters

no physics no cosmological dependence

4. RESULTS

1st series 2016 15 papers

Ŋ at z=0. of a super group Discovery

Cluster mass range

XXL paper II : 100 brightest clusters Pacaud et al, A&A 2106

Cluster L-T relation

XXL paper III Giles, Maughan et al 2016

Cluster M-T relation

XXL paper IV Lieu, Smith et al 2016

Cluster luminosity function

XXL paper II Pacaud, Clerc et al 2016

No evolution for $F(L_x)$!

Mantz at al 2014 XXL paper V

z-phot~1.9

Redshift confirmation by deep XMM obs.

Mantz et al, 2017, A&A in press XXL paper XVII

Second series : A&A 2018 20 papers

- Catalogue of 365 clusters
- Catalogue of 20 000 AGN
- AGN and galaxy environement studies
- Cluster cosmological analysis

Cluster sample and observables

- Based on the XXL C1 sample of the XXL 2nd release (Adami et al. 2018)
- Cosmological constraints from the cluster density in redshift space (dn/dz), restricting to the redshift range [0.05-1.0]:
 - > 178 clusters with measured redshifts
 - > 5 clusters without a measured redshift modeled as a 6.6% incompleteness for z>0.4

 $M_{500} \simeq 5 \ 10^{13} - 3 \ 10^{14}$

Comparison with CMB predictions

Using our best-fit scaling relations

CMB overestimates the cluster density

WMAP9 model : +37%

Planck15 model : + 61%

Results very much comparable to the Planck SZ clusters !

How significant is this discrepancy?

Which cosmology do the XXL C1 clusters favour ?

Flat Λ CDM analysis

- We ran MCMC chains based the likelihood of the predicted redshift density.
- Priors on $\Omega_{\rm b}$ and n_s included to stabilize the convergence.
- Additional weak prior on h = 0.7 +/- 0.1
- Cosmic variance accounted for as gaussian fluctuations on the total counts

A low value of $\sigma_8=0.72\pm0.07$ is prefered

 $\sigma_{\!8}$ driven low by the density at z>0.4

Results **comparable with Planck15** clusters but for a **different M**₅₀₀ **and z regime**

XXL/CMB comparison in Flat Λ CDM

- Errors are still larger than the Planck SZ cluster analysis (using only redshift distribution, conservative assumptions on scaling laws and half as many clusters)
- Tension with Planck CMB remains unsignificant at this stage (<0.1 σ)

XXL-C1 + KiDS-450 yield tighter constraints : Ω_m =0.31±0.05, σ_8 =0.72±0.06

But tensions are similar that for KiDS alone (see Hildebrandt 2017)

Despite the low cluster density, everything seems compatible with Planck CMB results

wCDM constraints

- For dark energy models (w=Cst), Planck CMB constraints are weaker
- Even with the early analysis, XXL can already improve constraints on w
 - Planck 2015 : $w = -1.44 \pm 0.3$
 - Planck + XXL: $w = -1.02 \pm 0.2$
- Still no significant tension ($\sim 0.5\sigma$), despite best fit offsets
- The combination of clusters and CMB disfavours phantom DE models

XXL paper XXV, Pacaud et al 2108

 $\begin{array}{c} \text{The 3D} \\ \text{cluster-cluster } \xi \end{array}$

Fig. 3. Redshift-space 2PCF of the C1 XXL clusters at z < 1.5 (black dots) compared to the best-fit model, i.e. the median of the MCMC posterior distribution (black solid line). The shaded area shows the 68% uncertainty on the posterior median. The derived best-fit model correlation length is $s_0 = 16 \pm 2 h^{-1}$ Mpc.

XXL paper XVI, Marulli et al 2018

NOW:

Inventory of the systemactic errors

- Accuracy of the mass calibration
- Average cluster shape ($\beta = 2/3$) (sel. funct.)
- Effect of 'peaked' clusters (sel. funct.)
- Scatter in the scaling relations
- Uncertainties in the theoretical mass function

➔ Will be adressed in the final analysis with the complete cluster sample (~400 objects) along with numerical simulations

3. X-ray cluster forward cosmology modelling

Clerc et al 2012 Pierre et al 2017 Valotti et al 2018

X-ray cluster cosmology

• Old route:

Flux, Temp => Mass => dn/dM/z => compare with theory Masses - and <u>scaling relations</u> - must be computed for each tested cosmology

• Quick way:

Work in directly in the observed parameter space
→ Predicted X-ray colour-magnitude diagrams

Clerc et al 2012, Pierre et al 2017, Valotti et al 2017

Fit simultaneously:

cosmology - cluster physics & evolution - selection effects

X-ray emission complex

Raw XMM cluster spectra

• CR in [0.5-2] keV

~ Magnitude

• HR = [1-2]/[0.5-1]

~ Colour

The CR-HR distribution

[1-2] keV / [0.5-1] keV hardness ratio (HR)

The selected

X-ray observable cluster parameters

- 1. XMM count-rate in [0.5-2] keV
- 2. XMM 'hardness ratio' : CR[1-2] / CR[0.5-1]
- 3. Apparent size : core radius of the β -profile
- 4. Redshift
- Useful: the selection is expressed in terms of 1+3
- ⇒ We project the predicted [M-z] space into the 4D [CR-HR-Rc-z] space for any cosmology + scaling relations
- ⇒ Fit to the observed 4D diagram

The M-z plane (10,000 deg²) for the selected C1 clusters

Projection into the 4D observational space

Easy: introducing error measurements

+ 20% err on all parameters

Reducing the area

Comparison with the standard approaches

(Fisher analysis)

Adding redshifts

→ 4th dimension to the diagram

Adding redshifts (photo-z are sufficient)

2) CR-HR-dz vs N(M, z)

Processing of 700 deg² ~ 9000 fake XMM observations (Aardvark simulations)

- Selection of the C1 clusters
- Construction of te CR-HR-Rc-z diagrams
- Analyses with +/- free parameters
 - MCMC
 - Amoeba
 - Check Fisher analysis

The 700 deg² simulations DM: Aardwark 39 x 25deg² fields

Emissivity map: one 5x5 deg² field

Gas painting : A. Farahi, G. Evrard (Michigan) X-ray image: L. Faccioli (Saclay)

A few results (a)

ID	Observable combination	Fitted parameters	< <i>p</i> >	best-10	Toy catalogues[x10]	Fisher
			MCMC	Amoeba	Amoeba	analysis
A1	CR-HR ₁	Ω_m	$0.249^{+0.014}_{-0.019}$	0.245	0.234±0.019	0.23 ± 0.013
		σ_8	0.823 ± 0.014	0.825	0.830 ± 0.018	0.83 ± 0.012
		$x_{c,0}$	$0.285^{+0.033}_{-0.034}$	0.290	0.232 ± 0.024	0.24 ± 0.031
		<i>w</i> ₀	$-1.117^{+0.212}_{-0.218}$	-1.037	-1.204 ± 0.296	-1.00 ± 0.246
A2	$CR-HR_1-r_c$	Ω_m	0.222±0.010	0.220	0.226 ± 0.013	0.23 ± 0.012
		σ_8	$0.846^{+0.011}_{-0.010}$	0.846	0.832 ± 0.015	0.83 ± 0.011
		$x_{c,0}$	$0.240^{+0.011}_{-0.013}$	0.247	0.248 ± 0.014	0.24 ± 0.017
		<i>w</i> ₀	$-1.009^{+0.153}_{-0.144}$	-0.969	-0.980±0.198	-1.00 ± 0.21
A3	$z-CR-HR_1-r_c$	Ω_m	0.219 ± 0.005	0.218	0.229 ± 0.004	0.23 ± 0.005
		σ_8	0.852 ± 0.009	0.854	0.832 ± 0.009	0.83 ± 0.009
		$x_{c,0}$	0.240 ± 0.003	0.239	0.240 ± 0.003	0.24 ± 0.003
		<i>w</i> ₀	$-0.990^{+0.029}_{-0.027}$	-0.990	-1.041 ± 0.033	-1.00 ± 0.032
A4	$CR-HR_1-HR_2-r_c$	Ω_m	$0.228^{+0.008}_{-0.009}$	0.227	0.226 ± 0.013	0.23 ± 0.008
		σ_8	$0.844^{+0.008}_{-0.009}$	0.843	0.833 ± 0.012	0.83 ± 0.010
		$x_{c,0}$	$0.226^{+0.008}_{-0.009}$	0.229	0.247 ± 0.012	0.24 ± 0.009
		w_0	$-1.166^{+0.148}_{-0.146}$	-1.121	-0.975 ± 0.195	-1.00 ± 0.113

Table 6. Summary table for the cosmological analysis of the Aardvark C1 CLEAN catalogue over 711 deg². The first column gives the run ID. The second column lists the signal variables used in the fit and the third one, the subset of free parameters. The fourth and fifth columns show the results from the MCMC analysis at the 68% confidence level and from the Amoeba best-10 fit, respectively. The sixth column shows the results obtained by running Amoeba over 10 toy catalogues of 700 deg², for which the mass function is taken to be Tinker's. The last column shows the Fisher analysis forecast for 1 σ errors.

A few results (b)

Parameter	MCMC fit	Amoeba best-10	Fisher analysis
Ω_m	0.228 ± 0.020	0.207	0.23 ± 0.025
σ_8	0.876 ± 0.073	0.814	0.83 ± 0.156
w ₀	-0.981 ±0.053	-0.940	-1.00 ± 0.065
x_c	0.249 ± 0.016	0.258	0.24 ± 0.034
σ_{x_c}	0.500 ± 0.019	0.504	0.50 ± 0.023
α_{MT}	1.538 ± 0.096	1.453	1.49 ± 0.169
γμτ	0.268 ± 0.136	0.162	0.00 ± 0.244
C^{MT}	0.502 ± 0.140	0.490	0.46 ± 0.297
σ_{MT}	0.258 ± 0.133	0.112	0.10 ± 0.206

Table 7. Fit results (z–CR-HR- r_c) over the 711 deg² Aardvark C1 CLEAN catalogue when cosmological and cluster physics parameters are let free.

Next and final step before the full cosmological analysis

- Compute a more realistic selection function using hydrodynamical simulations
- In order to evaluate the systematic uncertainties
 - Cluster irregular shapes
 - Cooling flows
 - Physical AGN contamination

Cosmos-OWLS simulation

Le Brun, McCarthy et al 2014

XMM image

X-ray pipeline output

Cosmo-OWLS simulations, *Le Brun et al 2014* AGN X-ray contribution, XXL paper XIX *Koulouridis et al 2018*

7'x7' image centered on a z = 0.95 cluster ; $M_{500} = 3.5 \ 10^{14}$ M – the black squares are the in-situ simulated AGN

5. Summary and conclusion

Summary

- 50 deg2 500 clusters 25 000 AGN
- A selection function exclusively based on observed parameters.
- The 2018 cosmological analysis shows a cluster deficit wrt CMB predictions.
- A new cosmological method based on the forward modelling of observables
- Stay tuned for the up-coming XXL 3rd release!

Next future

- A great deal of information is expected from the confrontation with hydrodynamical simulations
- At a later stage, simulations will allow us to bypass the scaling-relation formalism (as well as the mass function) in the cosmological analysis of X-ray clusters.
- results = cosmology + non gravitational energy inputs in the ICM
- Implement CNN in the cosmological analysis