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Unruh effect (W.G. Unruh, Notes on black-hole evaporation, PRD 14 (1976) 870 sect III)

But start with textbook treatments heavily relying on :

1) V. F. Mukhanov and S. Winitzki : Introduction to Quantum Fields in Classical
Backgrounds (Chapter 8 The Unruh effect)

and a tiny bit on :

2) R. M. Wald : Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics
(Chapter 5 The Unruh effect) Chicago Lectures in Physics

3) R. M. Wald : The History and Present Status of Quantum Field Theory in Curved Spacetime
gr-qc/0608018

4) K. Thorne, R.H. Price, D.A.MacDonald : Black holes the membrane paradigm,
Yale University Press (Chap VIII.B6)

Thanks to Jean Francois Glicenstein for pointing 1) and 4) to me



Unruh effect summarized

- in quantum field theory particles are excitations of quantum fields

- Unruh effect predicts that particles will be detected in a vacuum
by an accelerated observer

- simplest case: observer moves with constant acceleration through Minkowski
spacetime and measures the number of particles in a massless scalar field

- even though the field is in the vacuum state — observer finds a distribution
of particles characteristic of a thermal bath of blackbody radiation



Unruh effect

consider the trajectory of an observer moving with constant acceleration in Minkowski
spacetime

acceleration of observer in its own frame of reference (proper acceleration) is constant
introduce several reference frames :

- laboratory frame
the usual inertial reference frame with the coordinates (t, x, y, z)

- proper frame
the accelerated system of reference that moves together with the observer
also called the accelerated frame

- comoving frame : defined at a time t
is the inertial frame in which the accelerated observer is instantaneously at rest at t =t_
thus the term comoving frame actually refers to a different frame for each t



Unruh effect : trajectory of accelerated observer

- consider a uniformly accelerated observer with a time-independent
proper acceleration equal to a given 3-vector a

- trajectory of such an observer may be described by a worldline x" (1)
— 1T proper time measured by the observer

- 4-acceleration in the laboratory frame (see appendix)

u 2 ,u
a’ = du — d”x with u =

dt  d7 dt

related to the three-dimensional proper acceleration a by

a‘a = — l|a|’

u



Unruh effect : trajectory of accelerated observer

- assume now that the acceleration is parallel to the x axis a=(a, 0,0) with a >0
and that the observer moves only in the x direction — then (see appendix) :

- the trajectory has a simpler form if we choose the initial conditions
x(0)=a' and t0)=0

— then the worldline is a branch of the hyperbola x*-t*>=a™

- this trajectory has zero velocity at =0 (which implies x=x_, t=t)



Unruh effect : trajectory of accelerated observer

- the worldline of the uniformly accelerated observer in the Minkowski spacetime
is a branch of the hyperbola x*-t°= a™

- at large |t| the worldline approaches the lightcone

- the observer comes in from x = +oo
decelerates and stopsat x =a
and then accelerates back towards infinity

- in the comoving frame of the observer,
this motion takes infinite proper time,
from 1= —o0 to T = +00,

- dashed lines show the light-cone

- observer cannot receive any signals
from the events P, Q
and cannot send signals to R




Unruh effect ;: horizon

- an accelerated observer cannot measure distances longer than a'
in the direction opposite to acceleration :

for instance the distances to the events P and Q

one says that the accelerated observer
perceives a horizon at proper distance a™




Unruh effect : proper coordinates

to describe quantum fields as seen by an accelerated observer
— need to use the proper coordinates (T, &)
where 7 is the proper time and & is the distance measured by the observer

the proper coordinate system (T, §) isrelated to the laboratory frame (t, x)
by some transformation functions T (t,x) and ¢& (t, x)

t(7,&) = 1+Ta§ sinhart
x(1,&) = % coshat

coordinates (t, &) vary in the intervals —oo<t<+c0 and -a'<§<+oo

for £€<-a' - 0t/0t<0 i.e. the direction of time is opposite to that of T



Unruh effect ;: horizon

proper coordinate system of a uniformly
accelerated observer in the Minkowski
spacetime

- solid hyperbolae are lines of constant
proper distance ¢§

- hyperbola with arrows is the worldline
of observer £€=0 or x*—-t’=a"

- lines of constant T are dotted

- dashed lines show lightcone which
corresponds to &=-a"'

events P, Q, R are not covered
by the proper coordinate system

subdomain x > [t -~ Minkowski wedge



Unruh effect : Rindler spacetime

Minkowski metric in the proper coordinates (T, &) is:
ds°=dt’ -dx’=[1+a&  dv-d&
spacetime with this metric is called Rindler spacetime

curvature of Rindler spacetime is everywhere zero since it differs from Minkowski spacetime merely by a
change of coordinates.

to develop quantum field theory in Rindler spacetime, we first rewrite the metric
in a conformally flat form i.e. choosing a new spatial coordinate :

~~y

E=Inll+ag & is called the conformal distance

so that we obtain a common factor in the metric

~

ds® = e*°* (d T - dEZ)

1

the proper distance & is constrained by £ > —a ™ then the conformal distance varies in the interval [ —oco, +oo ]

relation between the laboratory coordinates and the conformal coordinates is

~ ~

t(7,8)=a " e sinhart x(7,8) =a’ e" coshart



Unruh effect : quantization of a scalar field

- quantize a scalar field in the proper reference frame of a uniformly accelerated observer

simplify problem — consider a massless scalar field in 1+1-dimensional spacetime

- procedure of quantization is formally the same in both coordinate systems
i.e. laboratory and accelerated frames :

- mode expansion in the laboratory frame
annihilation operator creation operator

A +0 dk 1 —ij + i i — i A+
olenl= [ o g L a et

a, +e

vacuum state in the laboratory frame i.e. the Minkowski vacuum [0 >

is the zero eigenvector of all the annihilation operators a’ a’ [0, > =0 forall k

- mode expansion in the accelerated frame

g = e d k 1 —ilklz + ik E - ilkle — k& 7.+
¢(‘L’,§) - f_oo (2;—;)1/2 \/m [ e K| k & b, + e|k| k'E b,

vacuum state in the accelerated frame i.e. the Rindler vacuum [0 >
is defined by b~ [0 > =0 for all k




Unruh effect ;: different vacuum

- mode expansions are decompositions into linear combinations of 2 different
sets of basis functions with operators ﬁik and b*

- operators & and b, are different although they satisfy similar commutation

relations

- Rindler vacuum [0 > and Minkowski vacuum [0 >
are 2 different quantum states of the field @



Unruh effect : which is the correct vacuum ?

which of the state [0 > or [0 > is the “correct” vacuum ?

- observers accelerating would agree that the field in the state [0 > has
the lowest possible energy and the Minkowski state [0 > has a higher energy

— thus a particle detector at rest in the accelerated frame will register
particles when the scalar field is in the state [0 >

- however in the laboratory frame the state with the lowest energy is [0 >
and the state |0 > has a higher energy

— therefore the Rindler vacuum state |0 > will appear to be an excited state
when examined by observers in the laboratory frame

neither of the two vacuum states is “more correct” if considered by itself

ultimately the choice of vacuum is determined by experiment:
the correct vacuum state must be such that the theoretical predictions
agree with the available experimental data



Light cone mode expansion : density of particles and Unruh temperature

- one can relate the two sets of operators éik and b*

-~ Bogolyubov transformations
(after some gymnastic rewritting the previous mode expansions in lightcone coordinates - see appendix)

— transformations linking the vacuum states of the quantum field in the Rindler
frame and the Minkowksi frame (i.e. accelerated frame and laboratory frame)

A

- vacua [0, > and |0 > corresponding to operators a and b are different

— the a-vacuum is a state with b-particles and vice versa

- one can compute the mean density of massless b-particle of energy E
in the a-vacuum (from the Bogolyubov transformation coefficients - see appendix) :

1 acceleration
E . a -
— | -1 with T = —

n(E) = | exp 5

thermal spectrum Unruh temperature



Unruh effect : one physical interpretation

a physical interpretation of the Unruh effect as seen in the laboratory frame
is the following :

- the accelerated detector is coupled to the quantum fields and perturbs
their quantum state around its trajectory

- this perturbation is very small but as a result the detector registers particles
although the fields were previously in the vacuum state

- the detected particles are real and the energy for these particles comes from
the agent that accelerates the detector



finishing with an exercise



Unruh effect : exercice

a glass of water is moving with constant acceleration

what is the smallest acceleration that would make the water boil due
to the Unruh effect?



Unruh effect : exercice

a glass of water is moving with constant acceleration

what is the smallest acceleration that would make the water boil due
to the Unruh effect?

expressing all quantities in SI units :

T = 4 becomes kT = ha
27 c2m

where k =~ 1.38 10 J/K is the Boltzmann’s constant

the boiling point of water is T = 373K

so the required acceleration is a ~ 10 ** m/s’

the Unruh effect is quite difficult to use in practice because the
acceleration required to produce a measurable temperature is enormous



Possible next steps

- Hawking like radiation from accelerated mirrors (from an analog/similar framework)
- Hawking radiation from Schwarzschild BH

- ‘t Hooft approach : scattering matrix approach, black hole unitarity, back reaction,
antipodal entanglement

- what about a possible role of BMS (Bondi, van der Burg, Metzner, Sachs)
asymptotic symmetries, relation to soft hairs on BH
Strominger at al. (+ one of the last papers from S.W. Hawking with collaborators) ?



APPENDIX



Derivation of Eq. (8.2). Let u”(7) be the observer’s 4-velocity and let ¢, be the time vari-
able in the comoving frame defined at 7 = 7p; this is the time measured by an inertial
observer moving with the constant velocity u* (7). We shall show that the 4-acceleration
a"(7) in the comoving frame has components (U, ah.as, aﬂ), where a’ are the components
of the acceleration 3-vector a = d”x/dt? measured in the comoving frame. It will then
follow that Eq. (8.2) holds in the comoving frame, and hence it holds also in the laboratory
frame since the Lorentz-invariant quantity a”a, is the same in all frames.

Since the comoving frame moves with the velocity u" (7y), the 4-vector u(m) has the
components (1,0, 0, 0) in that frame. The derivative of the identity v/ (7)u,(7) = 1 with
respect to 7 yields a”(7)u,(7) = 0, therefore a’(70) = 0 in the comoving frame. Since
dt. = u’(7)dr and v’ (10) = 1, we have

d?z" 1 d [l d:.z:“] B d*z"*  dx* d 1

dt? ~wW0dr |ul dr | T dr2 g dr dr u®’

It remains to compute

dr

d 1
dr u° (7o)

= —a’ (10) =0,

T=TQ

= [un(m)]

and it follows that d*2* /dr? = d*z" /dt? = (U, 0, ag,a‘:“) as required. (Self-test question:
why is a" = du" /dT # 0 even though v = (1,0, 0, 0) in the comoving frame?)



Derivation of Eq. (8.3). Since " = du /dr and u* = u” = 0, the components u”, u" of the

velocity satisfy
dr dr =%

(W) - (') =1.

We may assume that uo > 0 (the time 7 grows together with ¢) and that du' /dT > 0, since
the acceleration is in the positive x direction. Then

1
10 — \/1 + (ul)?; dd% = a\/l + (uh)?

The solution with the initial condition u"(0) = 0 is

dx dt
u (1) = — =sinhar, un(fr) = — = coshar.

dr dr
After an integration we obtain Eq. (8.3).



Unruh effect ;: horizon

- one can verify that an accelerated observer cannot measure distances longer
than a' in the direction opposite to acceleration :

for instance the distances to the events P and Q

- a measurement of the distance to a point requires to place a clock
at that point and to synchronize that clock with the observer’s clock

- however the observer cannot synchronize clocks with the events P and Q
because no signals can be ever received from these events

one says that the accelerated observer perceives a horizon at proper distance a™



- another way to see that the line §=-a

isa horizon is to consider a
line of constant proper length §=¢ >-a-

Unruh effect : horizon
1

line §=¢& is a trajectory of the form
x> — t* = const with proper acceleration

a, = S =g+ alf

VX2 -t

therefore worldline & =-a ' would have
to represent an infinite proper acceleration
which would require an infinitely large
force and is thus impossible

it follows that an accelerated observer
cannot hold a rigid measuring stick
longer than a™' in the direction opposite

to acceleration
(a rigid stick is one that would keep its proper

distance constant in the observes’s reference frame)




Unruh effect : light cone mode expansion

- convenient to introduce the lightcone coordinates

laboratory frame : U =t - x

accelerated frame: u=7t-& , v=71+E&

- metric, field equations and their general solutions expressed more concisely in
the lightcone coordinates

ds’ = dudv = eV "dudy




Light cone mode expansion : Minkowski frame (laboratory frame)

mode expansion can be rewritten in the coordinates U, v by first splitting
the integration into the ranges of positive and negative k

then introduce w = |k| as integration variable with range 0 < @ < 400

lightcone mode expansions explicitly decompose the field &b(ﬂ,\_/) into
a sum of functions of u and functions of v:

N — T d 1 —iou ~- iou A+
Ald = J, (2;){1’2 V2 w | o e
D= e d 1 —iwv ~ iw v A+
B(V) = fo (27-56)?/2 2o [ o T € a_, ]



Light cone mode expansion : Rindler frame (accelerated frame)

lightcone mode expansion in Rindler frame has exactly the same form except
for involving coordinates (u, v) instead of (i, v)

use integration variable Q to distinguish Rindler frame expansion from that of
Minkowski frame




Light cone mode expansion : Rindler/Minkowski frames relation

relations between laboratory (Minkowski) frame (i, v coordinates)
and accelerated (Rindler) frame (u, v coordinates) are simpler

—1 —au —1 —av

u = —da e V = d e

this coordinate transformation does not mix u and v so that
plu,v| = Alu(u)| + B[v(v)] = Plu| + Qlv|
entails two separate relations for u and for v

A(L_l(u)) = ﬁ(u) B(V(v)) = Q(v)



Unruh effect : Bogolyubov transformations (I)

relations between operators éi

T

and b}+Q are Bogolyubov transformations

they are obtained from these two separate relations for u and for v

A

Alul = Plu)  Blv] = Qlv

operators éim with positive momenta « are expressed through b~
with positive momenta Q

while operators a° are expressed through negative-momentum operators b*

®

there is no mixing between operators of positive and negative momentum



Unruh effect : Bogolyubov transformations (II)

for example from : A(H) = ls(u)

with Bogolyubov coefficients

A, o = % Flw, Q)
b;lzfo dw[aa)g a-a) + /))a)Qa ] ﬁa)Q — %F<_CI),Q)
w>0, Q>0
lA);L2 expressed through éiw using hermitian conjugate of b:Q above

and using F'(w, Q) = F(—w, —Q)

with auxiliary function: F(w,Q) = fic: ;L;r Qu-tou _ J'MO d_“ exp

iQu-i¥2e™
a

Bogolyubov transformations mixing creation and annihilation operators with
different momenta ® # Q



Unruh effect : Bogolyubov transformations (I1I)

analogously relations between operators a* and b i_Q are obtained from

(O

A

Blv) = Qlv]

i.e. the results for negative momenta are completely analogous



Unruh effect : density of particles (I)

~

and b~ are different
and vice versa

vacua |0 > and [0 > corresponding to operators a-
— the a-vacuum is a state with b-particles

(O]

what is the density of b-particles in the a-vacuum state ?

ey

b-particle number operator is: N Q- B+Q bﬁg

— the average b-particle number in the a-vacuum [0 > is equal to the
expectation value of N ot

<N,> <0y| bobg |0y>

% A+ * A - y A - A+
<OM| de() [awgaw + /J)a)Qaa)] J.da) [aa)'Qaw' + /J)a)'Qaa)'

00>

- J.dw |/3w9|2



Unruh effect : density of particles (IT)

computing the integral yield:

1
<No> = | exp ZJTGQ -1 ] 5(0)
where
_ 2w
no = | exp - -1

is the mean density of particle with momentum




Unruh effect : Unruh temperature

a massless particle with momentum € has energy E =|Q |

so the mean density of particle n_:

ng = | exp

is equivalent to the Bose-Einstein distribution :

n(E) = | exp %)1]

where T is the Unruh temperature :



BACKUP



Abstract R. Wald : The History and Present Status of Quantum Field
Theory in Curved Spacetime, gr-qc/0608018

Quantum field theory in curved spacetime is a theory wherein matter is treated
fully in accord with the principles of quantum field theory, but gravity is treated
classically in accord with general relativity. It is not expected to be an exact theory
of nature, but it should provide a good approximate description in circumstances
where the quantum effects of gravity itself do not play a dominant role. Some of
the earliest applications of the theory were to study particle creation effects in an
expanding universe. A major impetus to the theory was provided by Hawking’s
calculation of particle creation by black holes, showing that black holes radiate as
perfect black bodies. During the past 30 years, considerable progress has been made
in giving a mathematically rigorous formulation of quantum field theory in curved
spacetime. Major issues of principle with regard to the formulation of the theory
arise from the lack of Poincare symmetry, the absence of a preferred vacuum state,
and, in general, the absence of asymptotic regions in which particle states can be
defined. By the mid-1980’s, it was understood how all of these difficulties could be
overcome for free (i.e., non-self-interacting) quantum fields by formulating the the-
ory via the algebraic approach and focusing attention on the local field observables
rather than a notion of “particles”. However, these ideas, by themselves, were not
adequate for the formulation of interacting quantum field theory, even at a pertur-
bative level, since standard renormalization prescriptions in Minkowski spacetime
rely heavily on Poincare invariance and the existence of a Poincare invariant vacuum
state. However, during the past decade, great progress has been made, mainly due
to the importation into the theory of the methods of “microlocal analysis”. This
article will describe the historical development of the subject and describe some of
the recent progress.



R. Wald : The History and Present Status of Quantum Field
Theory in Curved Spacetime, gr-qc/0608018

The particle interpretation/description of quantum field theory in flat spacetime has
been remarkably successful—to the extent that one might easily get the impression from
the way the theory is normally described that, at a fundamental level, quantum field
theory is really a theory of particles. However, the definition of particles relies on the de-
composition of ¢ into annihilation and creation operators in eq.(12). This decomposition,
in turn, relies heavily on the time translation symmetry of Minkowski spacetime, since the
“annihilation part” of ¢ is its positive frequency part with respect to time translations.
In a curved spacetime that does not possess a time translation symmetry, it is far from
obvious how a notion of “particles” should be defined.



The Unruh effect may appear paradoxical to readers who are
used to thinking that quantum field theory is, fundamentally, a the-
ory of "particles", and that the notion of "particles" has objective
significance. How can an accelerating observer assert that "parti-
cles" are present in region I when any inertial observer would assert
that, "in reality", all of Minkowski spacetime is devoid of particles?
Which of these two observers is "correct" in his assertion? The an-
swer, of course, is that both observers are correct: It simply hap-
pens that the natural notion of "particles" defined by accelerating
observers (convenient for characterizing the behavior of "particle
detectors"—like the model of section 3.3—which are "time transla-
tionally invariant" with respect to b2) differs from the natural
notion of particles defined by inertial observers (convenient for
characterizing the behavior of detectors which are invariant under
ordinary time translations). No paradox arises when one views
quantum field theory as, fundamentally, being a theory of local field
observables, with the notion of "particles" merely being introduced
as a convenient way of labeling states in certain situations.

R. Wald : The Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics
(Chapter 5 The Unruh effect) Chicago Lectures in Physics



Nevertheless, the same physical predictions must be obtained
whether one labels the states of the quantum field theory via the
natural labeling of the accelerating observer or that of the inertial
observer. Now, when the field is in the Minkowski vacuum state,
|0>4,—and, thus, is in the thermal density matrix (5.1.28) in the natu-
ral labeling given by the accelerating observer—there is a nonzero
probability that a particle detector carried by the accelerating ob-
server will make a ftransition to an excited state. The accelerating
observer, of course, would describe this process as being simply the
result of the absorption of a "particle" by his detector. The inertial
observer must also see this transition in the state of the accelerat-
ing detector (as well as the accompanying change in the state of the
field), and it is instructive to analyze how he would explain what
has occurred. This can be worked out explicitly for the simple model
particle detector considered in section 3.3. The result is that the
inertial observer would describe this process as the emission of a
"particle” by the "detector", accompanied by a change in the state of
the detector due to "radiation reaction". Further details of the iner-
tial description of this process can be found in Unruh and Wald

1 9 8 4) R. Wald : The Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics
( . (Chapter 5 The Unruh effect) Chicago Lectures in Physics



K. Thorne, R.H. Price, D.A.MacDonald
Black holes the membrane paradigm (chap VIII)

- Unruh discovered that an accelerated particle detector in flat, empty spacetime should
behave as though it were bathed in a perfect bath of thermal radiation with temperature
T = (h/4r°) a/ k. where a is the detector's acceleration.

- Since a static observer (FIDO) just above Schwarzschild horizon can be viewed, in the
Rindler approximation, as completely analogous to an accelerated observer in flat spacetime
with acceleration a =g a, Unruh's insight suggested that such a FIDO should feel himself

bathed in thermal radiation with locally measured temperature T = (h/41%) (g/0)/kB=T /a

- This thermal radiation (« thermal atmosphere of the hole »), climbing up through
the hole’s gravitational field, would be redshifted by a factor a and therefore would
emerge with a temperature T as Hawking's thermal emission.

K. Thorne, R.H. Price, D.A.MacDonald, Black holes
the membrane paradigm., Yale University Press



K. Thorne, R.H. Price, D.A.MacDonald
Black holes the membrane paradigm (chap VIII)

- not easy to bring physical intuition into accord with these quantum field theory predictions

- especially troubling was the fact that, an accelerated observer in flat spacetime sees a
thermal bath, freely falling observers see pure vacuum

- correspondingly, although static FIDOs near a Schwarzschild black hole see a thermal
atmosphere, freely falling observers see no such atmosphere at all

- considerable progress toward understanding these apparently contradictory

viewpoints came from a series of model problems invented and studied by
Unruh and Wald (1982, 1984)

K. Thorne, R.H. Price, D.A.MacDonald, Black holes
the membrane paradigm., Yale University Press



K. Thorne, R.H. Price, D.A.MacDonald
Black holes the membrane paradigm (chap VIII)

- in one such problem they showed that when an accelerated observer absorbs a quantum
from the surrounding thermal bath a freely falling observer sees him emit a quantum

- these contrasting perception were reconciled by showing that both observers
agree that the absorption/emission has increased the energy in the radiation field

this is obvious from the freely falling observer’s viewpoint :
the field was empty before the emission and contains one quantum afterwards

it is less obvious but true from the accelerated observer’s viewpoint :

the field was in a perfectly thermal, mixed state — and had a finite probability for
containing no quantum whatsoever — before the absorption

by absorbing a quantum, the accelerated observer performs a partial measurement
on the field ; for example, he learns that it contains at least one quantum before the
absorption

this partial measurement, despite the absorption, turns out to increase the expectation
value of the energy in the field, as computed by the accelerated observer

K. Thorne, R.H. Price, D.A.MacDonald, Black holes
the membrane paradigm., Yale University Press



K. Thorne, R.H. Price, D.A.MacDonald
Black holes the membrane paradigm (chap VIII)

A particle detector carried by an inertial observer in flat, empty spacetime detects no particles
whatsoever ... correspondingly, the expectation value of the stress-energy tensor (<T "*>) ... is
precisely zero. It is this <T ""> which presumably couples to gravity through the Einstein field
equations and which, because it vanishes, leaves spacetime perfectly flat.

A uniformly accelerated observer in flat, empty spacetime moves along a hyperbola in the
Minkowski spacetime and a family of such accelerated observers moves along a family of
such hyperbolae

Because such a family cannot sample the entire spacetime (the FIDOS are confined to the
right-hand quadrant in the Minkowski spacetime diagram) the family cannot make a sufficiently
global measurement of any field so as to verify that it indeed is in the "Minkowski vacuum
state" (is unexcited)'

As a result, such FIDOs can obtain only partial information about the state of the field
- partial information which corresponds to regarding each mode of the field as in a mixed
state, with a nonunit probability P_to have zero quanta, and non zero probability P , P , ...

to have one, two, .... quanta

.... these probabilities are precisely thermally distributed and moreover these thermal P_

are precisely the probabilities that n quanta will be detected in the mode by a real physical

partlcle d@t@CtOf K. Thorne, R.H. Price, D.A.MacDonald, Black holes

the membrane paradigm., Yale University Press



K. Thorne, R.H. Price, D.A.MacDonald
Black holes the membrane paradigm (chap VIII)

- an accelerated detector behaves very differently from an
unaccelerated detector and the energy eigenstates to which
it couples with time-independent strength is very different
from eigenstates of constant inertially measured energy

ki

- in order to measure a quantum of energy E* ~ kT=h a/4n’

which has, as seen by the accelerated detector, a frequency
o™ = (2r/h) E* ~ a/21t, the detector must make a continuous
measurement that lasts longer than Ar ~ n/c* ~ 2n’/a ~ 20/a

- as one sees from the figure, relative to an inertial observer
the detector changes its own velocity by nearly the speed of
light during this measurement time.

- with such radically changing velocity, the detector surely will
not couple in any simple manner to the modes that an inertial
observer regards as simple !

K. Thorne, R.H. Price, D.A.MacDonald, Black holes
the membrane paradigm., Yale University Press



K. Thorne, R.H. Price, D.A.MacDonald
Black holes the membrane paradigm (chap VIII)

- the thermal bath, which the accelerated observers genuinely feel, is perfectly compatible
with a vanishing value of <T ">

- the compatibility arises from the effects of vacuum polarization :

From the viewpoint of the accelerated observers, vacuum polarization gives
a contribution to <T *""> precisely equal and opposite to that of a perfect
thermal bath with locally measured temperature T = (h/2m) a/k_

This contribution of vacuum polarization to <T "*> is independent of the actual
state of the fields

K. Thorne, R.H. Price, D.A.MacDonald, Black holes
the membrane paradigm., Yale University Press



Glimpses of
Quantum Field Theory
in Curved Spacetime



quantum field theory in curved spacetime

- quantum field theory in curved spacetime is the theory of quantum fields
propagating in a classical curved spacetime.

- the spacetime is described in this case in accord with general relativity
by a manifold M on which is defined a Lorentz metric g

- in the framework of quantum field theory in curved spacetime,
back-reaction of the quantum fields on the spacetime geometry can be taken into
account by imposing the semi-classical Einstein equation G_ =8 <T >

- issues associated with back-reaction not considered
— in the following
(M, g ) may be taken to be an arbitrary, fixed globally hyperbolic spacetime

R. Wald : The History and Present Status of Quantum Field
Theory in Curved Spacetime, gr-qc/0608018



reminder

- much of the quantum theory of a free field follows directly from the analysis of an
ordinary quantum mechanical harmonic oscillator described by the Hamiltonian

1 2 1 2 2
= — -|—_
H 2p 2a) q

- introducing the “lowering” (or “annihilation”) operator
7)) 1
= Q - 4+ 7oAl ——
a =54 iz, P

a a+lI)
2

- we can rewrite H as

H=w

- where a” is referred to as the “raising” (or “creation”) operator
and we have the commutation relations

a ,a}ZI , |H,a| = —wa



reminder

- in the Heisenberg representation the position operator q  is given by

:\/I (e—iwta n eiwta+

- annihilation operator a is seen to be the positive frequency part of the position operator

- ground state |0> of the harmonic oscillator is determined by
al0> =0

- all other states of the harmonic oscillator obtained by successive applications
ofa " to |0>



reminder

- consider, now, a free Klein-Gordon scalar field @ in Minkowski spacetime

- classically @ satisfies the wave equation
00,9 -m°¢ =0

- to avoid technical awkwardness — convenient to imagine that the scalar field resides
in a cubic box of side L. with periodic boundary conditions

-

b= L7 [ gl %] dx k=27 nmaun

- in that case @ (¢, 35) can be decomposed in terms of a Fourier series in X
- Z 1 ( R 2 2 )
=2 5 | ol ox |ed
k

o = k[ + m’



reminder

- quantum field theory associated to @ can be obtained by quantizing each of these
oscillators

- Heisenberg field operator @ (t, X ) then given by

1

T 20

—ik- x+1a)t +

e a;{ + e a-’

¢(t,3€>) — L—3/2

- however the sum on the r.h.s does not converge in any sense
that would allow one to define the operator @ at the point (t, X )

— roughly speaking, the infinite number of arbitrarily high frequency oscillators
fluctuate too much to allow @ (t, x ) to be defined

— difficulty can be overcome by “smearing” @ with an arbitrary “test function” f
(i.e., f is a smooth function of compact support) so as to define

fft x| ¢lt,x| d*x rather than  ¢|t,X|

the resulting formula for ¢ (f| can be shown to make rigorous mathematical sense

thus defining ¢ as an 'operator-valued distribution’



reminder

- ground state [0> of @ is simply simultaneous ground state of all of the harmonic
oscillators that comprise @, i.e., it is the state satistying a. [0> = 0 for all K

- in quantum field theory this state is interpreted as representing the “vacuum”

- state of the form (a")" |0> interpreted as a state where a total of n particles are present

- in an interacting theory, the state of the field may be such that the field behaves
like a free field at early and late times

— in that case, we would have a particle interpretation of the states of the field
at early and late times

— relationship between the early and late time particle descriptions of a state
— given by the S-matrix — contains a great deal of dynamical information
about the interacting theory

(and, indeed, contains all of the information relevant to laboratory scattering experiments)



reminder

- @ and m operators in the Heisenberg picture

plxel= [ LB Lo i gy

2a4? J2E, *

x,t]

0

JT(X,I) = E

- this equation makes explicit the dual particle and wave interpretation
of the quantum field @ (x)

— on the one hand ®(x) is written as a Hilbert space operator

which creates and destroys the particles that are the quanta of field excitation

— on the other hand ®(x) is written as a linear combination of solutions (e ** and e )

of the Klein-Gordon equation.

both signs of the time dependence in the exponential appear
i.e. both e tand e*®’t although p° is always positive

— if these were single-particle wavefunctions
they would correspond to states of positive and negative energy

let us refer to them more generally as positive- and negative-frequency modes



reminder

- the connection between the particle creation operators and the waveforms
displayed here is always valid for free quantum fields:

— a positive-frequency solution of the field equation has as its coefficient
the operator that destroys a particle in that single-particle wavefunction

- a negative-frequency solution of the field equation, being the Hermitian
conjugate of a positive-frequency solution, has as its coefficient

the operator that creates a particle in that positive-energy single-particle
wavefunction

- in this way the fact that relativistic wave equations have both positive- and
negative-frequency solutions is reconciled with the requirement that a sensible
quantum theory contain only positive excitation energies.



Penrose diagram

- a conformal transformation which brings entire manifold onto a compact region
such that we can fit the spacetime (ie. its infinities) on a finite 2-dimensional diagram

— known as Penrose-Carter diagram
(or Carter-Penrose diagram or just conformal diagram)

— make infinity were a « definite place »



Penrose diagram for Minkowski space

- idea — introduce a transformation that takes Minkowski space into a compact region
- begin with the line element in spherical coordinates

ds’ = —dt’ + dr’ + rz( do* +sin°0 dg° )

-now define: wu=t—-r and v=t+r then we have :
ds® = —dudv + %(u- v [de? + sin®d ¢?)

u = const
— radial light rays (ds =0 and d0 = d®d =0) give dudv =0

— thus radial light rays travel on lines of constant u and v

v = const



Penrose diagram for Minkowski space

- now let
, 1 1
u' = tan u=—(r-p)
2
v'=tan_1v=§(r+p)
since 0<r<oo and -oo<t<oo then -m/2<u and v <Tm/2

- rotating this primed system by 45° we obtain a set of new coordinates

t=tan 'u+ttan'v=tan'(t-r|+tan' (c+r| T

You are here
p=tan 'v-tan'u=tan' [t +r |-tan' | ¢t-r1|

— these give the Penrose diagram for Minkowski space

AN
RN
\\}7._:: %
7

— lines of constant r and t are shown in the diagram




Penrose diagram for Minkowski space

- we have mapped infinity to a finite region

— there are several types of infinity:
[,I,L and J°

- outgoing light rays follow paths t = r + const.
— they leave along lines of slope 1

— they arrive at v’ =7/2 or future null infinity 3

this symbol 3" is called scri plus

- ingoing radial lines end at 3~ i.e. past null infinity

- the motion of particles start at past timelike infinity 1
and end at future timelike infinity I

- finally, spacelike trajectories arrive at spacelike infinity I



Schwarzschild solution

solution of Einstein equations describing the exterior gravitational field of a static and
spherically symmetric body (M = Gm)

—1
ds* = g,, dx"dx" = — (1—&) dt’ + (1—¥) dr’ + r’dQ’
: r

with: dQ*=d6O° + sin0d¢?

- metric singularity at r=0 is a true singularity

i.e. a singularity of the spacetime geometry (curvature scalars blow up)

- metric singularity at r=2M is an apparent singularity
i.e. not a singularity of the spacetime geometry (no curvature scalars blow up)
coordinates fail to properly cover a region of spacetime
depends on the coordinate frame we use and has no physical significance

sometimes referred to as a coordinate singularity or a ‘breakdown’ of coordinates



Schwarzschild solution

- solution of Einstein equations describing the exterior gravitational field of a static
and spherically symmetric body (M = Gm) :

-1
ds’ = g., dx"dx" = (1—#) dt’ + (1—#) dr’ + r’dQ’

with: dQ*=d6O° + sin0d¢?

- introducing (Regge Wheeler tortoise coordinate) :

r

r r+ 2MIn(=—— Vi )
- concentrating on the r and t parts the metric becomes :
ds (1—M) [ —di® + dr? ]
r



Schwarzschild solution

*

- moving to null coordinates by writing : u=t-r* and v=t+r"

— the metric becomes :

ds® = —(1—& dudv
r
- or 2 M
2Me M
ds’ = — 22 € el HAM dudy
r
— or, using U = —e_m and V = em (U<0andV >0 for all values of r) :
3 —rl2M
gs? = —>2Me dUdv
r

— metric well defined for r = 2M (no singularity) i.e. U=0 or V=0, and forall r >0

— can thus extend the Schwarzschild solution by allowing U and V to take on
all values compatible with r > 0



Schwarzschild solution

- make the final transformation T = (U + V)/2 and X = (V-U)/2 (or U=T-X, V=T + X)
the full Schwarzschild metric takes the final form given by Kruskal and Szekeres :

2M3 —rl2M
s> = >2Me —dT? + dX?| + r*dQ?
r

- relation between the old coordinates (t, r) and the new coordinates (T, X) given by

( r _1) e—r/ZM — Xz_Tz

= 2tanh '(T/X)

- this spacetime is called the « extended black hole spacetime »
or also « extended Schwarzschild geometry »



Schwarzschild solution

T L :
v & -::ojismnt

r = canstant

Fig. 6.9. The Kruskal extension of Schwarzschild spacetime.

R. Wald : General Relativity, The University of Chicago Press



Penrose Diagram

future
timelike
infinity

future

spacelike

r=0 infinity

past
timelike
infinity

Penrose diagram of Minkowski space

-~
. M o~
- future 5|ngular:t)i//

A\ s -
. Asymptotic
Asymptotic infinity
infinity

—
’ﬂ'

.~~" past singularity

fully extended Schwarzschild geometry
(all values of U and V)



Schwarzschild solution

- at the horizon r = 2M we have UV =0 - either U=0 or V=0

- singularity r = 0 corresponds to the (two branches of the) hyperbola described by UV = 1

— represented by a wavy line (singularities will always be represented by wavy lines)

- in general, surfaces of r = const. correspond to hyperbolae UV = const. with UV < 1

- spatial sections with t = const. have U/V =const. and |U/V|<1

- ingoing and outgoing null geodesics are respectively given by U = const. and V = const.



Schwarzschild solution

- the U, V coordinates cover all of our spacetime but these coordinates do not have a
bounded range

- thus if we try to draw the U, V space on a sheet of paper, we have to stop at a finite
value of U, V, and we do not explicitly see the picture of how the ‘points at infinity’
border our spacetime

- to bring these ‘points at infinity’ to a finite coordinate distance from the points in the
interior of our spacetime, we make a conformal rescaling of the metric

- here the word ‘conformal’ means that at each point the metric is scaled by a
number g (x) - Q* (x) g (x) so that the angles between different directions

at the point x do not change and in particular null directions remain null directions

- such a rescaling helps to understand the causal structure of the spacetime
including the behavior of ‘infinity’



Schwarzschild solution

- define a new set of ~nu11 goordinates via U=tanU and V=tanV
suchthat — 2 < U, V<2

— the line-element

2 3 —rl2M 3 —rl2M
s> = —> Mre dUdv or s> = —>2Me dUdv + r’dQ’
r
putting back the angular variables part
becomes

3 _—rl2M
ds* = [2cosU cos V| _432M e

» dUdV + r’cos’U cos’VdQ?

- performing the conformal transformation we get :

d3’ = [2cosUcos V| ds’

32 M3 e—r/ZM
r

= —4

dUdV + r’cos’Ucos’VdQ?

and we add the points at infinity



Schwarzschild solution

- the curvature singularity UV = 1 now corresponds to
tanUtanV =1 < sinUsinV =cosU cosV & COS(U + W =0

which implies U+ V=+mw2 or T =+ /4 o
if we define T and X through U=T-X and V=T+ X"



Penrose Diagram




Penrose Diagram

r = 0 singularity 7

J +

y = Singularitys -

Penrose diagram for Kruskal space Penrose diagram for a collapsing star

curved line represents the surface and
the shaded region corresponds to the
interior of the star

horizon corresponds to the dashed line



singularity

infalling
matter

flat
Minkowski
space

past
null
infinity

Penrose diagram of the black hole
made by collapse of a shell

Penrose Diagram

future singularity

fi ure null

spacelike spacelike
infinity irfnjfinity
(for seco
gmmMm
inity)

past singularity

Penrose diagram for the ‘eternal Schwarzschild hole’



R. Wald : General Relativity, The University of Chicago Press

Fig. 6.8. Rindler spacetime, displayed as the “wedge,” I, of two-dimensional

Penrose Diagram

t= constant

"
x = constant

Minkowski spacetime.

Fig. 6.11.

r=0
(singularity)

r=0

(origin of
coardinotes )

S X

collapsing matier

The spacetime resulting from the complete gravitational collapse of a

spherical body. All of regions III and IV of the extended Schwarzschild spacetime
(Fig. 6.9) are “covered up” by the collapsing matter. However, (part of) the black

hole region II is produced.

t= constant

r = canstant

Fig. 6.9. The Kruskal extension of Schwarzschild spacetime.

......

-

collapsing

| matter |

Fig. 6.12. Another representation of the spacetime of Figure 6.11. Here, one of
the two suppressed spatial dimensions is restored, so each of the circles shown on
the collapsing body corresponds to the 2-sphere surface of the body at an instant of
time. However, the light cones no longer are represented by 45° lines. Indeed, the
spacelike nature of the singularity and the inevitable capture by the singularity of any
particle or light ray in the region r < 2 is illustrated here by the “tipping over” of
the future light cones in the strong field region.




Penrose Diagram

+
T= F
4] m{i:?i:ﬁi::i;i
o K [:ﬁilj:jf%;:i' |
R=m R=0 ~

Fig. 11.1. A spacetime diagram of the Einstein static universe. As described in the Fig. 12.1. A conformal diagram of the same spacetime as shown in Figures 6.11
text, Minkowski spacetime is conformally isometric to the region + and 6.12. From this conformal diagram, it is apparent that region II of the physical
O = I*(i") N I"(i*) of this spacetime. The boundary of O—consisting of the points spacctime lies outside of J™($7). In contrast, in Figure 11.1, J™($7) includes the
i”, i*, and i° and the null hypersurfaces $~ and $*—defines a precise notion of entire physical spacetime.

“infinity” for Minkowski spacetime.

Event Horizon

_—

-

12-2.

Fig. 12.2. Another representation of the closure, M, of the physical spacetime

depicted in Figure 12.1. As in Figure 12.1, the angular dimensions are suppressed so

each point in this diagram (except those-at r = 0 and the point {®) represents a

2-sphere. R. Wald : General Relativity, The University of Chicago Press



Penrose Diagram

t= constant

r = canstant

Fig. 12.2. Another representation of the closure, M, of the physical spacetime
depicted in Figure 12.1. As in Figure 12.1, the angular dimensions are suppressed so
each point in this diagram (except.those-at r = 0 and the point i®) represents a
2-sphere.

Fig. 12.3. A conformal diagram of the extended Schwarzschild spacetime (see Fig.
6.9), represented in the same manner as used in Figure 12.2. Note that since the
extended Schwarzschild spacetime has two distinct aﬂymptoucally flat regions, two
distinct conformal boundaries are shown.

R. Wald : General Relativity, The University of Chicago Press



Penrose Diagram

\lRinq Singulority)
N/ <

Fig. 12.4. A conformal diagram of the extended charged Kerr spacetime in the
casea # 0, a’ + e* < M>.

R. Wald : General Relativity, The University of Chicago Press



Penrose Diagram

"l’ Black Hale

Ergosphere

(a) (b)

Fig. 12.6. A sketch showing (a) a “side view” and (b) a “top view” of the
ergosphere of a Kerr black hole.

R. Wald : General Relativity, The University of Chicago Press
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