Cosmological Discoveries with SPHEREX

Olivier Doré Jet Propulsion Laboratory Caltech

Copyright 2019 California Institute of Technology. U.S. Government sponsorship acknowledged. All rights reserved.

Image Credit: Illustris TNG

http://spherex.caltech.edu

SPHEREx Team

ASTROPHYSICS & HELIOPHYSICS MID-EXPLORERS MISSIONS

https://explorers.gsfc.nasa.gov/

SPHEREX ADDRESSES THREE MAJOR QUESTIONS IN ASTROPHYSICS

- How did the Universe begin?
 Probing Inflation with the 3D clustering of galaxies
 - Survey the z<1.5 Universe to fundamental limits to measure signatures of inflation (non-Gaussianity, primordial power spectrum shape) and dark energy
 - Complement Euclid & WFIRST which survey smaller area at z>1
- What are the Conditions for Life Outside the Solar System?
 Measure broad ice absorption features in stellar spectra to explain how interstellar ices bring water and organic molecules into protoplanetary systems
- How did Galaxies begin?

Measure the extra-galactic background light (EBL) to probe the epoch of reionization (EOR)

SPHEREX: AN ALL-SKY SPECTRAL SURVEY

Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer

SPHEREx Dataset:

• For <u>every</u> 6.2" pixel over the entire sky:

➡ R=35-41 spectra spanning 0.75 µm < λ < 3.82 µm</p>
➡ R=110-130 spectra spanning 3.82 µm < λ < 5.0 µm</p>

• \simeq all-sky survey with 96 fine photometric bands

SPHEREX SURVEY DEPTH

All-sky survey

SPHEREX PROVIDES A RICH ALL-SKY SPECTRAL ARCHIVE

All-Sky surveys demonstrated high scientific returns with a lasting data legacy used across astronomy

> COBE IRAS GALEX WMAP Planck WISE

> > OD++16,18

AGGRESSIVE DATA RELEASE PLAN "CONVEYOR BELT MODEL"

L : Launch late 2023

- L+1 : End of commissioning
- L+2n: Every ~2 months after, for 24 months:
 - Release spectral images data (L2 product)
- L+6n: Every 6 month, we complete a full sky survey.
 - Release local wavelength maps
- L+12n: Every 12 month, complete two full sky surveys
 - ➡ Release source catalogs
- L+24 : End of nominal mission.
 - Release L4 catalogs (galaxy, ices, maps, legacy catalogs)

Archive hosted by IRSA at IPAC/Caltech (irsa.ipac.caltech.edu)
 Will also host tools to do on the fly mosaic, forced photometry on a catalog, time variable sources photometry, etc.

/outube

An Innovative Architecture Based on Mature Technologies

Olivier Doré

High-Throughput LVF Spectrometer

2.5 µm H2RG Arrays in Reflection

Spectra obtained by stepping source over the FOV in multiple images: <u>no moving parts</u>

PRE-PROGRAMED SCANNING STRATEGY

SPHEREX SCIENCE TEAM

Rachel Akeson
Matt Ashby
Jamie Bock (PI)
Lindsey Bleem
Peter Capak
Tzu-Ching Chang
Asantha Cooray
Brendan Crill
Olivier Doré (PS)
Tim Eifler
Salman Habib
Katrin Heitmann
Shoubaneh Hemmati
Chris Hirata
Woong-Seob Jeong
Davy Kirkpatrick
Phil Korngut

Caltech/IPAC CfA Caltech/JPL Argonne Caltech/IPAC JPL/Caltech **UC** Irvine JPL/Caltech JPL/Caltech **U.** Arizona Argonne Argonne **JPL/Caltech** OSU KASI Caltech/IPAC Caltech

& Experienced engineering team @ JPL and Ball

Elisabeth Krause	U. Arizona
Carey Lisse	JHU
Daniel Masters	JPL/Caltech
Phil Mauskopf	ASU
Gary Melnick	CfA
Hien Nguyen	JPL
Karin Öberg	CfA
Roger Smith	Caltech
Yong-Seon Song	KASI
Harry Teplitz	Caltech/IPAC
Volker Tolls	CfA
Stephen Unwin	JPL
Michael Werner	JPL
Rogier Windhorst	ASU
Yujin Yang	KASI
Michael Zemcov	RIT

Image Credit: Illustris TNG

Olivier Doré

INFLATION INVESTIGATION

THE EARLY UNIVERSE EXPANDED EXPONENTIALLY

INFLATION STRETCHES OUT QUANTUM FLUCTUATIONS

PLANCK MAP OF THE YOUNG UNIVERSE

PREDICTIONS VERIFIED: PRECISION THEORY MEETS PRECISION MEASUREMENTS

- Inflation <u>predictions</u> (1980s)
 - → The universe is nearly flat: $\Omega_{K} = 0$
 - ➡ Nearly scale-invariant pert.: 0.92<n_s<0.98</p>
 - ➡ All constituents have same perturbations
 - Background of gravitational wave pert.
 - Mostly Gaussian fluctuations

- Measurements (Planck 2018)
 - ➡ Ω_K =-0.011 ± 0.013 (95% CL)
 - → $n_s = 0.9626 \pm 0.0057$ (68% CL)
 - ➡ More than 98.3% true (95% CL) in variance
 - ➡ On-going search r<0.064 (95% CL, w/ BICEP)
 - ➡ True to 1 part in 100,000

Guth, Starobinsky, Linde, Steinhardt, Albrecht, Mukhanov, Chibisov, Hawking, Bardeen, Turner, Pi ... ~80

INFLATION PASSES OBSERVATIONAL TESTS:

HOW DOES INFLATION WORK?!

- Two observational paths are been actively pursued:
 - To measure the Energy Scale of Inflation through the signature, in the polarization of the CMB, of the gravitational wave background it created (BICEP, KECK, Planck...)
 - To measure "primordial non-Gaussianity" to understand the complexity of the physical process driving Inflation

CMB CONSTRAINTS ON PRIMORDIAL NON-GAUSSIANITY

$$\Phi = \Phi_G + f_{NL}^{loc} \ \Phi_G^2$$

Measuring f_{NL} is a unique probe of inflation:
 Probes interactions in the primordial Lagrangian
 Distinguish between single field and multi-field inflation

- Current limit using Planck (T+P) bispectrum:

 f_{NL} = 0.8 ± 5 (68%)
- Future limits with a perfect CMB experiment (T+P, /<3000):

 f_{NL} ≤ 2 (68%)

PRIMORDIAL NON-GAUSSIANITY INTRODUCES MODE COUPLING

• Peak-background split insights:

$$\Phi = \Phi_G + f_{NL}^{loc} \ \Phi_G^2$$

$$\Phi = \Phi_{Long} + \Phi_{Short}$$

$$\Phi = \Phi_{Long} + f_{NL}^{loc} \Phi_{Long} \Phi_{Short} + f_{NL}^{loc} \Phi_{Short}^2 + \dots$$

Slosar++07, Desjacques++16

PRIMORDIAL NON-GAUSSIANITY AND GALAXY BIASING

Olivier Doré

PRIMORDIAL NON-GAUSSIANITY AND GALAXY BIASING

PRIMORDIAL NON-GAUSSIANITY AND BIASING

 $b_{NG}^{loc}(q) \propto f_{NL}^{loc} \frac{1}{T(q)q^2}$

Dalal, OD, Huterer, Shirokov 07

SINGLE FIELD INFLATION PREDICTION

No mode coupling

Single field consistency relation

$$f_{NL}^{loc} = -\frac{5}{4}(n_s - 1) \simeq 0$$

Maldacena 2003, Creminelli & Zaldarriaga 2004 de Putter, Green, OD 16

SINGLE FIELD INFLATION MULTI-FIELD INFLATION

- To study what a f_{NL} measurement can teach us, we focus on a subset of two-field models:
 - $\rightarrow \Phi$, an "inflaton" field, dominates background and curvature perturbations at Horizon exit.
 - \rightarrow X, a "spectator" field, subdominant at Horizon exit but contributes to final curvature perturbation production later.
 - → Natural extension of single field inflation.
- Fraction of the primordial curvature perturbation contributed by X is guantified by R ➡ R~0: Inflaton dominated regime ➡ R~1: Spectator dominated regime

$$R \equiv \frac{\mathcal{P}_{\xi|\chi}}{\mathcal{P}_{\xi}} = \frac{N_{\chi\star}^2}{N_{\phi\star}^2 + N_{\chi\star}^2}$$

de Putter, Gleyzes, OD 16

SINGLE FIELD INFLATION MULTI-FIELD INFLATION $W(\Phi, \chi) = U(\Phi) + V(\chi)$

• U potential is not critical to f_{NL} :

$$U(\phi) = \frac{1}{2}m_{\phi}^2\phi^2$$

• We consider three cases for V:

→ (Quadratic-) Axion in the Horizon crossing approximation

$$V(\chi) = \frac{1}{2}V_0 \left[1 + \cos\left(\frac{2\pi\chi}{f}\right)\right]$$

Modulated reheating

$$V(\chi) = \frac{1}{2}m_{\chi}^2\chi^2$$

de Putter, Gleyzes, OD 16

POSTERIOR DISTRIBUTION OF FNL GIVEN PLANCK

Quadratic-Axion Potential Modulated Reheating

de Putter, Gleyzes, OD 16

INSIGHTS TO BE GAINED FROM FNL MEASUREMENTS

Quadratic-Axion Potential

Modulated Reheating

f~ axion decay constant

Inflation decay rate and its dependence on X

de Putter, Gleyzes, OD 16

OBSERVATIONAL PROSPECTS

Modulated Reheating

COMPLEMENTARITY BETWEEN THE PNG PROGRAM AND THE B-MODE PROGRAM

Curvaton Model

de Putter, Gleyzes, OD 16

QUANTIFYING PRIMORDIAL NON-GAUSSIANITY DISCOVERY POTENTIAL

Assuming spectator field dominance (R>0.9)

Quadratic-Axion:

→With Planck f_{NL} : $P(|f_{NL}| > 1) = 58\%$

Strong discovery potential

Without Planck f_{NL} : P ($|f_{NL}| > 1$ (10)) = 63 (6)%

Modulated reheating

→With Planck f_{NL} : $P(|f_{NL}| > 1) = 72\%$

 Planck already reduced the parameter space but more to cover

→Without Planck f_{NL} : P ($|f_{NL}| > 1$ (10)) = 92 (60)%

de Putter, Gleyzes, OD 16

BUILDING A 3-D GALAXY CATALOG WITH SPHEREX

Stickley++16

POWER SPECTRUM MEASUREMENT

SPHEREX AND INFLATION

- SPHEREx produces a unique 3-D galaxy survey
 - Optimized for large scales to study inflation
 - Two independent tests of non-Gaussianity
- SPHEREx improves non-Gaussianity accuracy by a factor of ~10
 ➡ Improves Δf_{NL} ~ 5 accuracy

today to $\Delta f_{NL} < 0.5$

Discriminates between models
 ⇒ Single-field inflation f_{NL} << 1
 ⇒ Multi-field inflation f_{NL} ≥ 1

MAIN SYSTEMATICS EFFECTS

• Allocated systematic budget level set at the $\delta n/n = 0.2\%$ rms/dex

- → ~mmag controls of all effects over ~30 deg. scales
- Dominant expected systematic effects (for cosmology):
 - Galactic extinction: 3 mmag rms before mitigation and δn/n = 0.06% rms/ dex after mitigation
 - Selection non-uniformity: 0.2 mag rms before mitigation and δn/n = 0.06% rms/dex after mitigation
 - Redshift errors due to non-uniform noise: 0.2 mag rms before mitigation and δn/n = 0.017% rms/dex after mitigation
 - Calibration stability: <1% drift over 4 surveys and δn/n = 0.05% rms/dex after mitigation
 - → Non-uniformity in external catalogs: 0.1% rms/dex after mitigation

EXTRA-GALACTIC BACKGROUND LIGHT INVESTIGATION

ASTRONOMY IN THE INTENSITY MAPPING REGIME

ŧ

PROBING THE EBL WITH SPATIAL FLUCTUATIONS IN NIR OR MM

Planck CIB map

Planck (Lensing map) Planck C. et al. 2014

Successful Applications at Longer Wavelengths

Herschel EBL: Viero et al. 2013 Planck EBL: Planck C. et al. 2013 XXX Planck EBL x CMB Lensing: Planck C. et al. 2014 XVIII Herschel EBL x CMB Lensing: Many

Akari Matsumoto et al. 2010

72

113 113.5 114 114.5 115 115.5 116 116.5 2.4 um

72.5 73 73.5 3.2 um

Olivier Doré

JHU Intensity Mapping Workshop - June 2017

PROBING THE EPOCH OF REIONIZATION

- SPHEREx orbits enable deep/frequent observations of about 200 sq. deg near the ecliptic poles (great for systematics!)
- SPHEREx wavelength coverage and resolution will enable large-scale measurement of spatial fluctuations in the Extragalactic Background Light (EBL)
- In particular, SPHEREx will monitor/ explain the Intra-Halo Light and its evolution (CIBER, Zemcov++14)
- SPHEREx has the raw sensitivity to probe the expected EOR signal (but separation with low z signal will be challenging)
- The sensitivity in this region will enable deep intensity mapping regimes using multiple lines at all redshift, and maybe Lya at high redshift (see Croft++15, 18)

sr-') 10* Current CIBER **Measurements IHL Templote** m Wq) 10³ SPHEREX (100 X 1σ MEV errors) 2000 10² AKAR ٧ Science 10' EOR ~ Rat. ٧ 500 10° MEV Perf. Ē CBE 2°، 10 3 Wavelength (μm)

Fluctuations in Continuum Bands

LINE INTENSITY MAPPING WITH SPHEREX

SPHEREx measures with high SNR the line L weighted bias at multiple z with multiple lines.
Enough sensitivity for BAO measurements till z~6 but some contaminants to deal with.

ICE INVESTIGATION

What Are the Conditions for Life Outside the Solar System?

Sourced by biogenic molecules: H_2O , CO, CO_2 , CH_3OH ...

Current debate:

Did earth's water come from the Oort cloud, Kuiper belt or closer? Did water arrive from the late bombardment (~500 MY) or before?

More than 99 % interstellar water is locked in ice 'Follow the Water' means 'Follow the Ice'

SPHEREx will measure the H_2O , CO, CO_2 , CH_3OH ice content in clouds and disks, determining how ices are inherited from parent clouds vs. processed in disks

SPHEREX SURVEYS ICES IN ALL PHASES OF STAR FORMATION

SPHEREx will measure ice abundance towards >> 20,000 sources and determine how water and biogenic ices evolve from molecular clouds to young stars to proto-planetary disks

SUMMARY

• SPHEREx selected as the next MIDEX. Launch planned late 2023.

SPHEREx will create the first all sky near-infrared spectroscopic survey:
 A public dataset of lasting legacy.

SPHEREx offers a simple and very robust design and modus operandi:
 Naturally enables a high control of systematics thanks to multiple built-in redundancy.

SPHEREx will enable multiple and powerful studies:

- Primordial non-Gaussianity to learn about Inflation.
- \Rightarrow Extra-galactic background light from z=0 till the reionization era.
- Origin of water and biogenic ices in young stellar objects and proto-planetary systems.

SPHEREx has strong synergies with current and future observatories
 LSST, DESI, JWST, WFIRST, TESS, e-ROSITA, SO, CMB-S4...

Exciting decade

http://spherex.caltech.edu

#