LETTER

A dominant population of optically invisible massive galaxies in the early Universe

T. Wang^{1,2,3}*, C. Schreiber^{2,4,5}, D. Elbaz², Y. Yoshimura¹, K. Kohno^{1,6}, X. Shu⁷, Y. Yamaguchi¹, M. Pannella⁸, M. Franco², J. Huang⁹, C. -F. Lim^{10,11} & W.-H. Wang¹⁰

F435W F606W F775W F814W F850LP F105W F125W F140W F160W

How many galaxies can we find at high redshifts?

Lookback time (Gyr)

Madau & Dickinson 2014, ARAA

90% matière noire

 $\langle k_d \rangle = \rho_{\rm IR} / \rho_{\rm FUV} + 1$

 $2.5\log(k_d) = 1 => SFR_{tot} = 2.5xSFR_{UV}$

 $2.5\log(k_d)=0.5 \Rightarrow SFR_{tot}=1.6xSFR_{UV}$

 $2.5\log(k_d)=0.1 \Rightarrow SFR_{tot}=1.1xSFR_{UV}$

Madau & Dickinson 2014, ARAA

© 2015. The American Astronomical Society. All rights reserved.

GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO $z \simeq 4^*$

M. PANNELLA^{1,2,25}, D. ELBAZ¹, E. DADDI¹, M. DICKINSON³, H. S. HWANG^{1,4}, C. SCHREIBER¹, V. STRAZZULLO^{1,5}, H. AUSSEL¹, M. BETHERMIN^{1,6}, V. BUAT⁷, V. CHARMANDARIS^{8,9}, A. CIBINEL^{1,10}, S. JUNEAU¹, R. J. IVISON^{6,11}, D. LE BORGNE^{2,12}, E. LE FLOC'H¹, R. LEITON^{1,13}, L. LIN¹⁴, G. MAGDIS^{8,15}, G. E. MORRISON^{16,17}, J. MULLANEY^{1,18}, M. ONODERA¹⁹, A. RENZINI²⁰, S. SALIM²¹, M. T. SARGENT^{1,10}, D. SCOTT²², X. SHU^{1,23}, AND T. WANG^{1,24}

JCMT Hawaii (15m)

JCMT Hawaii (15m)

HDF850.1 at the IRAM Plateau de Bure Interferometer

IRAM – 7 antennes de 15m 15

The Intense Starburst HDF 850.1 in a Galaxy Overdensity at *z* = 5.2 in the Hubble Deep Field

Hubble Deep Field: Image credit STScI and NASA

Walter et al., Nature, June 2012

HDF850.1 at the IRAM Plateau de Bure Interferometer

The Intense Starburst HDF 850.1 in a Galaxy Overdensity at z = 5.2 in the Hubble Deep Field

HDF850.1 et son environnement

K-correction

Casey et al. 2014

INFRARED COLOR SELECTION OF MASSIVE GALAXIES AT z > 3

T. WANG (王涛)¹, D. ELBAZ¹, C. SCHREIBER¹, M. PANNELLA¹, X. SHU², S. P. WILLNER³, M. L. N. ASHBY³, J.-S. HUANG^{3,4,5}, A. FONTANA⁶, A. DEKEL⁷, E. DADDI¹, H. C. FERGUSON⁸, J. DUNLOP⁹, L. CIESLA¹, A. M. KOEKEMOER⁸, M. GIAVALISCO¹⁰, K. BOUTSIA⁶, S. FINKELSTEIN¹¹, S. JUNEAU¹, G. BARRO¹², D. C. KOO¹², M. J. MICHAŁOWSKI⁹, G. ORELLANA¹³, Y. LU¹⁴, M. CASTELLANO⁶, N. BOURNE⁹, F. BUITRAGO⁹, P. SANTINI⁶, S. M. FABER¹², N. HATHI¹⁵, R. A. LUCAS⁸, AND P. G. PÉREZ-GONZÁLEZ¹⁶
We introduce a new color selection technique to identify high-redshift, massive galaxies that are systematically missed by Lyman-break selection. The new selection is based on the H₁₆₀ (H) and Infrared Array Camera (IRAC)

LETTER

A dominant population of optically invisible massive galaxies in the early Universe

T. Wang^{1,2,3}*, C. Schreiber^{2,4,5}, D. Elbaz², Y. Yoshimura¹, K. Kohno^{1,6}, X. Shu⁷, Y. Yamaguchi¹, M. Pannella⁸, M. Franco², J. Huang⁹, C. -F. Lim^{10,11} & W.-H. Wang¹⁰

ALMA targets: 4.5µm sources undetected by HST in GOODS-S, UDS and CANDELS-COSMOS

H-dropouts

[4.5] brighter than 24 $\rightarrow M_{\star} > 10^{10.1-10.4} M_{\odot}$ at z ~ 3 – 6

HST H-band fainter than 27 (AB) (Wang, Elbaz +16)

HST/WFC3 1.6µm ~2 hours

ALMA 870µm 1.8 min/galaxy

ALMA detects 39 out of 63 H-dropouts in 1.8' at $870\mu m$

 $[4.5] < 24 \text{ mag} \rightarrow M_{\bigstar} > 10^{10.1-10.4} \text{ M}_{\odot} \text{ at } z \sim 3 - 6 \text{ (Wang, Elbaz +16)}$

space density: $n \sim 10^{-5}~Mpc^{-3}$, $~SFR \sim 200~M_{\odot}yr^{-1}$

space density: $n \sim 10^{-5} \text{ Mpc}^{-3}$, SFR $\sim 200 \text{ M}_{\odot}\text{yr}^{-1}$

space density: $n \sim 10^{-5} \text{ Mpc}^{-3}$, SFR $\sim 200 \text{ M}_{\odot} \text{yr}^{-1}$

space density: $n \sim 10^{-5} \text{ Mpc}^{-3}$, SFR $\sim 200 \text{ M}_{\odot}\text{yr}^{-1}$

space density: $n \sim 10^{-5}~Mpc^{-3}$, $~SFR \sim 200~M_{\odot}yr^{-1}$

Confirming the redshifts of the HST-dark galaxies

Stacked far-infrared SED beaking at ~400um Extremely red 870um/450um colors: half of the sample are likely at z>4

A higher contribution from protoclusters to the cosmic SFR density at higher redshifts

Chiang+2015

GOODS-ALMA: optically-dark ALMA galaxies shed light on a cluster in formation at z = 3.5

L. Zhou^{1, 2, 3*}, D. Elbaz², M. Franco^{2, 4}, B. Magnelli⁵, C. Schreiber⁶, T. Wang^{2, 7}, L. Ciesla^{2, 8}, E. Daddi², M. Dickinson⁹, N. Nagar¹⁰, G. Magdis^{11, 12, 13, 14}, D. M. Alexander¹⁵, M. Béthermin⁸, R. Demarco¹⁰, J. Mullaney¹⁶, F. Bournaud², H. Ferguson¹⁷, S. L. Finkelstein¹⁸, M. Giavalisco¹⁹, H. Inami²⁰, D. Iono^{21, 22}, S. Juneau^{2, 9}, G. Lagache⁸, H. Messias^{23, 24}, K. Motohara²⁵, K. Okumura², M. Pannella²⁶, C. Papovich^{27, 28}, A. Pope¹⁹, W. Rujopakarn^{29, 30, 31}, Y. Shi^{1, 3}, X. Shu³², and J. Silverman³³

z=3.556

z=3.467

