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LISA constellation

30 cm telescopes, 2W laser beams
SC relative motion ~ 10m/s
ESA L3 Mission with launch in 2034
+4 yrs operation



Supermassive Black Hole Binaries (SMBHBs):   ~ 103

Coalescences with mass ratio larger than 10−1 and total masses in (105 , 107 ) M
 ⊙

 

Intermediate-Mass Black Hole Binaries (IMBHBs): 
Coalescences with mass ratio larger than 10−1 and total masses in (102 , 105 ) M

 ⊙
 

Extreme mass-ratio and intermediate mass-ratio inspirals (EMRIs and IMRIs):
Coalescences with mass ratios in (10−6 , 10−3 ) and (10−3 , 10−1 )
and total masses in  (103 , 107 ) M

  ⊙
:     ~103   EMRIs

Stellar origin BH binaries (SOBHBs):
Inspirals with sufficiently low total mass e.g. in  (50, 500) M 

  ⊙

such that they could be detected both by LISA and 2nd or 3rd generation ground-based detectors 

Stochastic Backgrounds: 
Cosmological sources of GWs that produce a stochastic background

Galactic Binaries:   ~105 
White dwarf or neutron star binary inspirals within the Milky Way that produce
nearly monochromatic signals

Sources

………………………………..



Sources



GW passing through a system of 2 isolated  free-falling test masses would
permanently stretch or compress the comoving distance between them

memory is sourced by a changing time derivative of the system's mass multipoles
(like the oscillatory component of a GW)

it grows through the cumulative history of GW emission

memory signal inherits the radiating system's evolving past: 
   its strength at any time is  the result of the integrated history of the system

Gravitational Wave memory

can be generalized   i.e.not only displacement memory effect but also (subdominant) :

focus here on the permanent displacement memory effect

- spin memory

- center of mass memory

- relative proper time, relative velocity, relative rotation memories

motivated by / associated to a symmetry 
(as for the displacement memory effect)⏟



Gravitational Wave memory
example: nonlinear memory from binary black-hole mergers

from M. Favata



Gravitational Wave memory

from M. Favata



observations of SMBHB coalescence memory events would : 

- provide information about SMBHB properties  augmenting that obtained from the
  oscillatory components

- shed light on strong-field effects of General Relativity (GR)

- provide hints for fundamental symmetries in GR such as BMS symmetries 

GW memory with SMBHBs

for a supermassive black hole binary (SMBHB) undergoing coalescence :

- memory signal initially displays negligible growth 
  corresponding to the slow time evolution of the binary's inspiral 

- during binary coalescence (most dynamic phase), 
  system emits a burst of memory signal 



  

asymptotically flat spacetimes →  metric becoming flat as one approaches  ∞ 

asymptotic symmetries :

- ordinary 4-dimensional  Minkowski spacetime has a 10-parameter group of isometries 
  → Poincaré group

this isometry group plays an important role in the analysis of the behavior of physical fields on 
Minkowski spacetime, in particular in the proof of conservation laws

In a general curved spacetime one would not expect any exact isometries to be present

- possible to define the notion of an asymptotic symmetry

but group of asymptotic symmetries is not the Poincaré group

it is a much larger group containing an infinite-dimensional subgroup 
of  "angle dependent translations"  called supertranslations → BMS group 

Asymptotic symmetries :   BMS group

BMS from Bondi, Van der Burg, Metzner, Sachs  (1962)



  

- supertranslations → angle dependent translations  

→ associated conserved charges are the supermomenta

→ non-trivial diffeomorphisms acting on the asymptotically flat phase space

→  supertranslations have a relationship with gravitational radiation

transforming a geometry into another one - physically inequivalent

- supertranslations commute with the time translation

→ their associated charges will commute with the Hamiltonian 

→ all these degenerate states have the same energy

- BMS group :    BMS 
4
  =  Lorentz   x   Supertranslations

→ reproducing the semi-direct structure of the Poincaré group

→ only difference is that the translational part is enhanced, 
     implying degeneracy of the gravitational Poincaré vacua 

→ change in the vacuum state is detected by a net permanent displacement
     i.e. passage of GW radiation changes the vacuum by a BMS transformation

Asymptotic symmetries :   BMS group



  

Memory effect, asymptotic symmetries 
                 and soft theorems

A. Strominger, arXiv:1703.05448
S. Weinberg Phys. Rev. 140, B516 (1965)



An aside on SMBHB events

- e.g : together with observable e.m. counterpart →  
          could provide information on the distance-redshift relation for redshifts up to  8

observations of SMBHB coalescence events in general would provide more informations: 



In this paper :   

K. Islo, J. Simon, S. Burke-Spolaor, X. Siemens

Prospects for Memory Detection with 
      Low-Frequency GW Detectors

arXiv:1906.11936

→ estimate the current and future potential to detect GW memory from
    SMBHB coalescence using simulation based on semi-analytic models 
    for the SMBHB population

→ models are based on local observables for SMBHBs 
    encompass only uncertainties from local mass functions, galaxy merger timescales …

→ expand models to include « lower » black hole masses 
     i.e. down to M

BH
  >  105 M

 ⊙
   and higher redshifts

     bands relevant to both Pulsar Timing Arrays (PTAs) and the Laser Interferometer Space Antenna (LISA)

→ try to take into account the unknown decoupling radius for binary-host interactions

~



SMBHBs creation and GW

SMBHB created by hierarchical evolutionary processes involving the mergers of 
    increasingly massive galaxies 

→ SMBHBs form during major galaxy mergers 

effectiveness of the mechanisms by which these black hole systems are driven
   to coalescence is an open question in astrophysics

SMBHBs that eventually coalesce are candidates for producing strong GW memory bursts

→ grow more tightly bound through repeated interactions with their galactic environment

→ interaction drives orbital evolution to smaller separations



for equal-mass SMBHBs  →   energy available for the GW memory burst ranges from 5% to 
10% of the total binary energy

- for example, an optimally-oriented binary consisting of two 109 M
⊙
 black holes 

  coalescing 1 Gpc away from Earth will emit a GW memory burst with amplitude
 
   → h

mem 
 10∼ −15 

- precise value depends on binary inclination and the degree of black hole spin-alignment

SMBHBs creation and GW



SMBHB population

- need to estimate the SMBHB coalescence rates → model dependent

population model → simulation of semi-analytic models for the SMBHB population
                                 (Simon, Burke-Spolaor 2016)

- number density of SMBHB coalescences 
  occurring at different time interval depends on 
  redshift, mass and mass ratio of galaxy pairs

- cast from galaxy pairs into inferred SMBHBs 
  using the empirical relationship found between 
  host galaxy bulge mass and black hole mass 
  ( McConnell & Ma 2013; Shankar et al. 2016)

McConnell & Ma, ApJ, 764 (2013) 184



Example of Galaxy/BH co-evolution

Klein et al. PRD 93, 024003 (2016)



SMBHB event rates for LISA 
           are uncertain

Klein et al. PRD 93, 024003 (2016)



SMBHBs  population

addition of lower-mass black holes binaries in the study  i.e.   105 − 107 M
⊙

Galaxy And Mass Assembly survey  (Wright et al. 2017) 
to estimate the distribution of these lower mass binaries at z < 0.1 

restrict the parameter space (to include only what is known observationally?)

mass ratio   0.25 < q < 1    (to be consistent with ‘major mergers?)

redshift :  z < 3

primary galaxy mass :   108 M
⊙
   ≤  M  ≤  1012 M

⊙
 

ULTRAVista survey (Ilbert et al. 2013) for higher z



at early stages of galaxy merger 

dominant mode of energy loss below  10 pc binary separation is not yet understood ∼
many environmental interactions potentially contribute   (Merritt & Milosavljević 2005)

unclear when the environment decouples from the binary
after which GW emission dominates 

Evolution of SMBHBs

→ dynamical friction to reduce the orbital angular momentum of the individual black holes 
     until they sink to the center of the merger remnant forming a SMBHB

what is the upper limit to how fast the binary BH can merge ?

→ final parsec question ? 

interactions with stars can lead to binary BH merger 
but only over times exceeding 1 Gyr and only if all conditions are favorable (Ostriker) ?



The final parsec problem ?

from E. Barausse

there are ~ 1-2 orders of magnitude in radius between 10 pc and 0.01 pc 
in which orbital decay time exceeds the Hubble time   (the “bottleneck”)



from E. Ostriker

there are ~ 1-2 orders
of magnitude in radius
between 10 pc and 0.01
pc in which orbital
decay time exceeds the
Hubble time (the “bottleneck”)



Evolution of SMBHBs

- offset between z
gal 

and z
burst 

 (trying to incorporate varying environmental influence) 

→ introduce a parameter :   decoupling radius a
 d
 

    to be the orbital separation at which the binary’s evolution typically becomes GW-dominated

a
d
 > 1  pc :  SMBHBs embedded within sparse environments exhaust their environmental

                   interactions earlier and have the potential to stall before reaching a regime 
                   where GW-radiation can drive the binary to coalesce

~

a
d
 → 0 :  opposite scenario involving a binary strongly coupled to its environment, 

               undergoing extremely efficient orbital shrinking and reaching coalescence quickly 

- consider two redshifts (assuming coalescence does not immediately follow binary formation) 

→ redshift at which a galaxy forms a binary :   z 
gal

 

→ redshift of the memory burst upon SMBHB coalescence :     z 
burst

 



Evolution of SMBHBs

adopt a simple power-law model relating total binary mass and decoupling radius 
   to emulate any environmental interaction (more common among smaller SMBHBs than larger ones):

least efficient environments consist of persistently depleted loss-cone and sparse gas
in the galaxy merger core

→ find the orbital separation at which the binary will stall for a given galaxy-merger-bulge mass
     (following  Begelman, Blandford, Rees, Nature 1980)

→ best-fit parameters in this scenario :   a
 8
 = 1.3 pc and α = 1.0 

maximally-efficient environment allows for even the most massive binaries to reach sub-
parsec separations through continual loss-cone refilling and a ready supply of in-flowing gas

ad  =  a8  (
M tot

108M⊙
)
α

→ assume the ratio between bulge radius and bulge mass to be linear
    with M87 serving as the fiducial ratio

→ in this context :  choose a 
8 
= 0.01 pc (fig. 1 of Begelman, Blanford Rees 1980)) 

    and consider 1.0 ≤ α ≤ 3.0



GW memory signal model

→ in the time domain the signature of a memory signal from a SMBHB can be 
    approximated by a step-function centered at the moment of coalescence

h×+

(mem)( t)  =  Δh×+

(mem)  Θ(t) where Θ (t)  is the Heaviside-step function 

→ in the frequency domain including a minor correction for LISA 
     (since LISA may be able to resolve the time varying features of the memory signal
        between onset of coalescence and ringdown) :

h+

(mem)
( t)  ≃  i  

Δ h+
(mem)

2π  f
 [1  - π

2

6
( τ f )2] for   0 < f < f

c 

where f 
c
 is the cut-off frequency corresponding to twice the orbital frequency at coalescence 

frequencies larger than f 
c
 do not contribute to the GW signal. 

can approximate  f
c
  τ −1    where τ is the light crossing time of the merger remnant∼

τ is also the timescale for the rise of the memory signal during the merger

h+

(mem)( t)  =  0 for   f  ≥ f
c 



SNR estimates

SNR for a memory burst produced by SMBHBs 
of total binary mass M 

tot
 coalescing at redshift z

                        (optimally beamed i.e.  ι = ±π/2)

- expected SNR ranges from 100 to 10000 
  → highest SNR event from binaries at   z < 0.5  and with   105 M

⊙
  < M

tot
 < 107 M

⊙
  

- M
tot

 < 104.2 M
⊙
 coalescences will occur beyond the LISA frequency band (≥ 1 Hz)

  → in which case, the memory signal will be the dominant coalescence signature 
       i.e. “Orphan memory” signals



- LISA prospects for 
  SNR ≥ 5 events :

→ less than 1 per million years 
    in the most pessimistic

→ occurring 0.3 − 2.8 times / year
    in the most optimistic model

Memory event rates



- frequent binary coalescences to 
  occur among reduced masses μ
  between   103 M

⊙
  and  106 M

⊙
   

  constituting 99% of all memory 
  events

Memory event rates

model A with α = 3.0

model C with α = 1.0

3.3 events / yr in total

0.4 events / yr in total

- from model A (optimistic) to C (pessimistic)

→ decreasing environmental efficiency
     results in higher-mass binaries
     stalled at significant rates

→ total number of bursts across 
     parameter space drops 
     from 3.3 to 0.4 times / yr

→ lower-mass binaries initiated near 
    the limits of parameter space evolve
    to closer redshifts, making up for 
    those which may have stalled and 
    keeping 0.1 < z < 1.5 consistently populated



outlook

prospects for detecting a GW memory burst from SMBHB sources with LISA 
   using simulation based on semi-analytic models for the SMBHB population 

memory effects associated to GR fundamental symetries → BMS asymptotic symmetries 

strong dependence on astrophysical inputs

- SMBHB coalescence mechanisms, coalescence rates

- SMBHB population

- try to take environmental effects into account → decoupling radius (coalescence time, last parsec ?)

up to 3 to 4 memory burst events with SNR > 5 per year in LISA in optimistic scenarii

- add lower-mass black holes binaries   i.e. 105 − 107 M
  ⊙
  ,  in the study
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Short formulary on GW

Consider Einstein equation

Rμν  - 
1
2
gμν R  =  

8πG

c4  T μν

Consider a small perturbation of the flat Cartesian metric weak field (far from source)

gμν  =  ημ ν  + h̄μ ν with |̄hμν| ≪ 1

hμν  ≡ h̄μ ν  - 
1
2
η
μ ν h̄Define trace reverse tensor                                             with                               and         h̄  =  ηαβ h̄

αβ h̄  =  −h

Equation of wave is 

in the Lorentz gauge (also denoted as harmonic or De Donder gauge)   ∂ν h
μν  =  0

with     □  =  ηρ σ ∂
ρ
∂
σ

 □ h  =  −
16 πG

c4  Tμν  = 0

From M. Mapelli, A. Buonanno and D. Buskulic



Short formulary on GW

propagation of GWs once they have been generated → wave equation in vacuum  →  T
μν

 = 0

 □

GWs propagate at the speed of light

denote the field           satisfying transverse and traceless gauge conditions

h00  = 0  ,  h0 i  = 0  ,  ∂i h
ij  = 0  ,  hii  = 0

h  = 0

hij

i.e. the transverse-traceless (TT) tensor hTT
ij

assume a GW plane wave propagating along the z-axis

hTT
ij (t , z)  = (

h+ h× 0
h× −h+ 0
0 0 0)  cos [ω (t  - 

z
c )]

where  h
+
  and  h

×
    are  the two independent polarization states

From M. Mapelli, A. Buonanno and D. Buskulic



Short formulary on GW

By integrating the wave equation one gets :

hij
(t , x⃗)  = 

2 G

r c 4  
d2

dt 2 I ij ( t  - 
r
c )

Distance source-
observer

Moment of inertia,
or second mass
moment, or
quadrupole
moment of mass

Retarded time

I ij  = 
1

c2 ∫ dx3 T 00
(t , x⃗ ) x i x j

not all accelerating masses generate GW but only those QUADRUPOLE

monopole and dipole disappear

for a gravitational wave to form, there must be an ASYMMETRY IN MASS DISTRIBUTION

G/c4  ≈  8.24 x 10-45  s2 . m-1 . kg-1    (→ space-time « rigidity »)
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Short formulary on GW

I  = 
1

c2 ∫dx3 T 00
(t , x⃗)

I i  = 
1

c2∫ dx3 T 00
(t , x⃗ ) x i

I ij  = 
1

c2 ∫ dx3 T 00
(t , x⃗ ) x i x j

momenta of the mass density   (quantity T00/c2  is a mass density)

Mass energy  (conserved)

centre of mass energy  (conserved)

Moment of inertia  (not conserved)

From M. Mapelli, A. Buonanno and D. Buskulic



Short formulary on GW

GWs from BINARIES

y

z

x
observer

m
1

m
2

a

θ

Masses m
1
 and m

2

Distance between compact object : a

total mass : M = m
1
 + m

2

reduced mass : M = m
1
m

2
 / m

1
 + m

2

Newtonian approximation

Kepler law

Circular orbits

ω  = √
Gm
a3

From M. Mapelli, A. Buonanno and D. Buskulic



Short formulary on GW

For a binary system, one can show that                                                              can be put as

(in spherical coordinates (r, θ, Φ )  and for eccentricty e = 0 ) :

hij
(t , x⃗)  = 

2 G

r c 4  
d2

dt 2 I ij ( t  - 
r
c )

h+(t ,θ ,ϕ ,r )  = 
1
r

4 Gμ

c4  ωorb
2 a2  ( 1  + cos2

θ

2 )  cos (2ωorb t ret  + ϕ )

h×(t ,θ ,ϕ , r )  = 
1
r

4 Gμ

c4  ωorb
2 a2  cosθ  sin (2ωorb t ret  + ϕ )

t ret  = t  - r /cwhere ωorb
2  = 

G (m1  + m2 )

a3

h+ h×
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Short formulary on GW

Frequency term depends only on 2 ω
orb

Frequency of GW :    ω
GW

 = 2 ω
orb  

(true for most of evolution)

Amplitude of GW (dimensionless strain) :

h  = 
1
2 √h+

2
+h×

2  = 
2 G2m1m2

a c4  
1
r

 √( 1  + cos2
θ

2 )
2

 + cos2
θ

→ the bigger the amplitude (strain), the easier the detection

→ the farther the binary, the smaller the amplitude

→ the larger the masses, the larger the amplitude

→ the smaller the semi-major axis (a) , the larger the amplitude

From M. Mapelli, A. Buonanno and D. Buskulic



Short formulary on GW

emission of GWs implies loss of orbital energy :

the binary shrinks while emitting Gws till it merges

If the binary shrinks ( a → 0 ), frequency becomes higher :

If the binary shrinks  the amplitude increases :

ωGW  = 2ωorb  = 2√
G (m1  + m2 )

a3

Eorb  = −
G (m1  + m2 )

2 a

h  ∝  
1
a

From M. Mapelli, A. Buonanno and D. Buskulic



Short formulary on GW

emission of GWs implies loss of orbital energy   → Power radiated by GWs :

PGW  = 
32
5

G4

c5

1

a5 m1
2m2

2
( m1  + m2 )

PGW  = 
d Eorb

dt
 = 

Gm1m2

2a2  
da
dt

da
dt

 = 
64
5

G3

c5 a−3 m1m2 (m1  + m2 )

Integrating the differential equation → one gets the  timescale for a system to merge 
by GW emission :

tGW  = 
5

256
c5

G3

a4

m1m2 (m1  + m2 )

From GR

From Kepler
and Newton

From M. Mapelli, A. Buonanno and D. Buskulic



Short formulary on GW

For binaries with general eccentricity e

tGW  = 
5

256
c5

G3

a4
(1  - e )

7 /2

m1m2 (m1  + m2 )

Timescale depends on semi-major axis (a) , eccentricity, masses

Timescale extremely long :

for 2 neutron stars with mass equal to the Sun mass   m
1
 = m

 2
 = M

sun

orbiting at the distance between Sun and Earth i.e. a = 1 AU  and  with eccentricity e = 0 
→  t

GW
 ~ 2 x 10 17 yr

      Life of the universe GW ~  13 x 109 yr

a (t)  = a0  [1  - 
256/5 G3 m1m2 (m1  + m2 ) t

c5 (1  - e2 )
7 /2

a0
4 ]

1 /4

Previous equations are only true before merger when binary can be considered Keplerian
i.e. only during inspiral

From M. Mapelli, A. Buonanno and D. Buskulic



Short formulary on GW

ωorb
2  = 

G (m1  + m2 )

a3  = 
GM
a3 Eorb  = −

G (m1  + m2 )

2 a
ȧ  = −

2
3

(a ω̇orb ) (
ω̇orb

ωorb
2 )

ω̇orb/ωorb
2 ≪1as long as                                     

→  the radial velocity is smaller than the tangential velocity and 
      the binary’s motion is well approximated by an adiabatic sequence of quasi-circular orbits 

the orbital frequency varies as    (with  ν = μ / M) :

and the GW frequency  ω
GW

  =  2 ω
orb

ω̇orb

ωorb
2  = 

96
5

 ν  (
G M ωorb

c3 )
5/3

the orbital frequency and GW frequency change in time

ω̇GW  = 
96
5

 π8 /3  (
G M chirp

c3 )
5/3

 ωGW
11 /3

with M
chirp

 = μ3/5 M 
From M. Mapelli, A. Buonanno and D. Buskulic



Short formulary on GW

Introducing the time to coalescence    τ = t
coal 

− t   

and integrating                                                                    one gets :ω̇GW  = 
96
5

 π8 /3  (
G M chirp

c3 )
5/3

 ωGW
11 /3

ωGW  ≃  130  (
1.21M  
M chirp

)
5 /8

 ( 1  sec
τ )

3 /8

   Hz⊙

coalescence times of  17min,  2sec,  1msec,   for  ∼ ω
GW   

 10,  100,  10∼ 3 Hz

relation between the radial separation and the GW frequency

a  ≃  300  (
M

2.8 M   )
1/3

 ( 100  Hz
ωGW )

2/3

   km
⊙

From M. Mapelli, A. Buonanno and D. Buskulic



Short formulary on GW

a useful quantity is the number of GW cycles, defined by :

NGW  = 
1
π  ∫

tin

tfin

 ω( t) dt  = 
1
π  ∫

ωin

ωfin

ω
ω̇
dω

Assuming ω
 fin

  ω≫
 in

 , we get

NGW  ≃  104  (
M chirp

1.21 M   )
−5/3

 (
ω in

10  Hz )
−5/3

⊙

From M. Mapelli, A. Buonanno and D. Buskulic



Short formulary on GW

displacements ∆L induced by a passing GW   ∆L / L  h∼

For a GW strain of 10-20  and  typical LISA arm length  of  2.5 109 m  
→ displacement   ∆L ~ 2.5 10-11 m  = 10 pm  

From M. Mapelli, A. Buonanno and D. Buskulic



Dark energy and the ΛCDM model

GW sources at cosmological distances as reliable and independent distance indicators 

LISA will detect mainly 3 types of GW sources at cosmological distances : SMBHBs, EMRIs, 
and SOBHBs

→ only SMBHBs are expected to provide observable EM counterparts 

→ these sources to be observed at different redshift ranges: 

 

→ yield a direct measurement of the luminosity distance 
     (which does not need to be calibrated with the cosmic distance ladder)

→ for cosmological applications they need a corresponding redshift measurement

without any EM counterpart identification use “statistical method” on galaxy catalogues 
to infer redshift information

joint detection of an EM counterpart to infer the GW source redshift

SOBHBs     at   z < 0.1
EMRIs         at   0.1 < z < 1 
SMBHBs     at   1 < z < 10

test models of dark energy through the distance-redshift relation



modeling of the expected sources 

→ predict the rate and redshift distribution of MBHB merger events

use the results of semi-analytical simulations of the evolution of the BH masses and spins
   during galaxy formation and evolution : 

→ produce several variants of semi-analytical model by considering :   

→  for each variant produce synthetic catalogues of : 

1)  “light-seed” scenario :  first massive BHs form from remnants of population III stars (popIII) 

2)  “heavy-seed” scenario : massive BHs form from the collapse of protogalactic disks

- delays with which massive BHs merge after their host galaxies coalesce

- competing scenarios for the initial conditions for the massive BH population at high z   

- MBHB merger events including all information about MBHBs (masses, spins, z, ...) 

- and their host galaxies (mass in gas, mass in stars, ...)   



Dark energy and the ΛCDM model

S/N levels as a function or redshift (left scale) and luminosity distance (right scale) 
and of total source frame mass for the baseline configuration of LISA, for a fixed 
mass ratio of 0.2  (the stars identify threshold cases to define mission requirements)



Dark energy and the ΛCDM model



- redshift range: 1 < z < 8

- method: with counterparts

- expected detections: 10 − 100 /yr

- average LISA errors:

∆d
L
 / d

 L
 ~ few % (inc. lensing)

∆Ω < 10 deg2

- useful standard sirens

 ∼ 6 /yr (with counterpart)

- expected results:

H
0
 to 1%∼

w
0
 to  15%∼

Dark energy and the ΛCDM model



Definitions reminder

from Friedmann equations → Hubble rate  H = /a  in the late universe can be expressedȧ
    in terms of the redshift  z = a

0
 /a − 1 as :

H
0
 = h × 100 km/(s Mpc)  →  Hubble constant today

H ( z )  =  H o  √ΩM ( z  + 1 )
3

 + (1  -ΩΛ  -ΩM )  ( z  + 1 )
2
 + ΩΛ  exp[− 3 wa z

z  + 1 ] ( z  + 1 )
3(1+wo+wa)

Ω
 M

 = 8π G ρ0

M
 / (3H2

o 
) → relative energy density of matter today (dark + baryonic)

Ω
Λ
 = Λ c2 / (3 H2

o
)  or  Ω

Λ
 = 8π Gρ0

DE
 / (3H2

o
) → cosmological constant or dark energy (DE) energy density today

w(z) = w
0
 + (1−a) w

a
 = w 

0
 + w

a
 z / (z +1)   → model for DE equation of state 

Ω
k
 = −k c2 / (a

o
 H

o
 )2   → effective relative energy density for the curvature    and    we have Ω

k
 +  Ω

M
 + Ω

Λ
 = 1

adopt  fiducial cosmological model with parameter values : 
 Ω

M
 = 0.3,  Ω

Λ
 = 0.7, h = 0.67  (H

 0
 = 67 km/s/Mpc),  w

0
 = −1,  w

a
 = 0



Definitions reminder

luminosity distance

L →  intrinsic luminosity of a source

d L  =  √  L/ (4 π  F )

F → the flux received by the observer

d L ( z )  = 
c
H 0

 
1  + z
√|Ωk|

   sin  [  √|Ωk| ∫
0

z

 
H o

H ( z ' )
 dz ' ]         if      Ωk=1  - ΩM  - ΩΛ  > 0

accounting for the redshift and expansion effects one gets the distance-redshift relation :

d L ( z )  = c  (1  + z )    ∫
0

z

 
1

H ( z ' )
 dz '                                 if      Ωk=1  - ΩM  - ΩΛ  = 0

d L ( z )  = 
c
H 0

 
1  + z
√|Ωk|

   sinh  [  √|Ωk| ∫
0

z

 
H o

H ( z ' )
 dz ' ]        if      Ωk=1  - ΩM  - ΩΛ  < 0



Definitions reminder

when measuring the distance-redshift relation  d
L
(z)  with observations 

one can in principle constrain the values of all the five parameters    Ω
M

 ,  Ω
Λ
 , h , w

o
 , w

a
 

 →  makes the simultaneous determination of the five parameters very difficult in practice

however there is a strong degeneracy between the parameters   Ω
M

 , Ω
Λ
 , h 

and the dark energy equation of state parameters  w
0
 , w

a
 





The final parsec problem

from E. Ostriker
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there are ~ 1-2 orders
of magnitude in radius
between 10 pc and 0.01
pc in which orbital
decay time exceeds the
Hubble time (the “bottleneck”)

from E. Ostriker



from E. Ostriker









- the long-term evolution of massive black hole binaries at the centers of galaxies is studied 
  in a variety of physical regimes, with the aim of resolving the ‘‘final parsec problem,’’ 
  i.e., how black hole binaries manage to shrink to separations at which emission of GW 
  becomes efficient…  (Milosavljević & Merritt 2003)

The final parsec problem



- there is no final parsec “problem” since there’s no evidence that supermassive black holes
  actually do merge

- in the simplest models (no gas, spherically symmetric) mergers take : 
  109  - 1010 yr in low-luminosity galaxies
  1010 - 1013 yr in high-luminosity galaxies (OK for LISA, bad for PTAs)

- other collisionless effects (e.g., triaxiality) can shorten merger
  time, but not below 109 yr

- interactions with gas or a third black hole can accelerate or hinder the merger

- perhaps the black holes don’t make it to the final parsec?

The final parsec problem



GW memory signal model

over the binary’s lifetime memory undergoes :

1) slow growth prior to merger

2) rapid accumulation of power during coalescence

3) eventual saturation to a constant value at ringdown 



- magnitude of the spacetime offset ∆h 
mem

 is affected by BH spin-alignment

→ higher-order spin effects should be incorporated in future simulations 
    to properly reflect the saturated memory amplitude

→ maximally aligned spinning case exhibiting the strongest signal

GW memory signal model



<ρ
2
>  =  4  Re  ∫0

∞

 
<
~h +

(mem)(f )∣~h (mem)+
* (f )>

S f

 df

 =  
(Δh+

(mem) )

π
 2

2

 ∫0

f C
 
df

f 2  (1  - π
 2

6
(τ f )2)  

1
Sn( f )

SNR estimates

- average SNR given by

S
f
  is the power spectral density of strain noise



  

- define a notion of asymptotic flatness using an adapted coordinate system :

- introduce gravity with metric  gμν 

Gravity in Bondi gauge

→ Bondi-Sachs coordinate system  :    xμ = (u, r, xA )  with  xA = (θ, φ)

→ in the Bondi gauge :    grr = 0,  grA = 0

→ select the radial coordinate  r  to be the luminosity distance

→ specifying fall-off conditions as r → ∞  (far from « sources »)

→ would like to obtain Minkowski spacetime in the limit   r →∞   at  constant   u,  x A

→ asymptotically flat spacetimes which approach a notion of future null infinity I+

→ physically this describes the so-called “radiation zone” where for example
     gravitational waves leave their imprint on spacetime far from the sources



  

- class of allowed metrics  :

ds2  = −du2  - 2du dr  + r2 γAB dx
AdxB                (Minkowski)

 + 
2m
r

du2  + rC ABdx
A dxB  + DBCABdu dx A

 + 
1

16 r2 C ABC
ABdudr  + 

1
r

 [  
4
3
(N A  + u∂AmB)  - 

1
8
∂A(CBCC

BC
)  ]  dudx A

 + 
1
4
γ ABCCDC

CD dx Adx B

 +  (Subleading terms)

all indices are raised with γAB and we have also  γAB C
AB

 = 0

Gravity in Bondi gauge



  

- m ≡ m (u, xA )   is the Bondi mass aspect

→ gives the angular density of energy of the spacetime as measured from a point at I+ 
     labeled by u and in the direction pointed out by the angles x A

→ physically, radiation carried by gravitational waves (or e.m. fields) escapes through I+

- CAB (u, xA)  which is traceless and symmetric (i.e. contains two polarization modes)

→ contains all the information about the gravitational radiation around I+

→ its retarded time variation is the Bondi news tensor N
AB

 =  ∂
u
 C

AB

→ this is the analog of the Maxwell field for gravitational radiation 
    and its square is proportional to the energy flux across I+

- N
A
 (u, xA )  is the angular momentum aspect

→ closely related to the angular density of angular momentum with respect to the origin
    defined as the zero luminosity distance r = 0

Gravity in Bondi gauge



  

- metric as written so far not yet obeying Einstein’s equations 

- two additional constraints upon pluging following 2 ansätze into Einstein’s equations :

∂um  = 
1
4
DA DB N AB  - T uu

∂uN A  = −
1
4
DB  (DB D

CC AC  - DA D
CCBC )  + u∂A(T uu  - 

1
4
DB DC N BC)  - T uA

and      T uA  = 8 π  lim
r→∞

(r 2T uA
M
)  - 

1
4
∂A  (C BCN

BC
)  + 

1
4
DB (C

BCN CA)  - 
1
2
C AB DC N BC

with     T uu  = 
1
8
N AB N

AB  + 4 π  lim
r→∞

(r2T uu
M
)

TM

μν
  is the stress tensor of matter and  D

A
 is the covariant derivative associated to γ 

AB

- because of these constraints  generic initial data on I+ is specified by 
  m, C

AB
 and N

A
 at initial retarded time and N

AB
 at all retarded times

in addition of course with all the subleading fields that we ignored so far

Gravity in Bondi gauge



  

Asymptotic symmetries : BMS
4
 group

- the generators can be divided into 2 categories :

1) supertranslations (vectors generated by T)

2) superrotations (vectors generated by RA) 
    → asymptotic Lorentz transformations                        

- to find which are the (BMS) asymptotic symmetries one looks for vector fields ξ 
  which generate infinitesimal diffeomorphisms and which satisfy Killing equations
  on the asymptotic metric

i.e. looking for infinitesimal diffeomorphisms that preserve the Bondi gauge 
     and the boundary conditions (Lie derivative L

ξ
g 

rr
= 0, etc …. )

- the asymptotic algebra is larger than the Poincaré algebra



  

Asymptotic symmetries : BMS
4
 group

- supertranslations → angle dependent translations  

→ associated conserved charges are the supermomenta

→ non-trivial diffeomorphisms acting on the asymptotically flat phase space

→  supertranslations have a relationship with gravitational radiation

transforming a geometry into another one physically inequivalent

- supertranslations commute with the time translation

→ their associated charges will commute with the Hamiltonian 

→ all these degenerate states have the same energy

- one then gets at the end     BMS 
4
  =  Lorentz   x   Supertranslations

→ reproducing the semi-direct structure of the Poincaré group

→ only difference is that the translational part is enhanced, 
     implying degeneracy of the gravitational Poincaré vacua !



  

- transit of GW radiation through a set of detectors 
  in the vicinity of the future null infinity I+

- detectors are located at large r
0
  and inserted 

  at different points on the sphere S2 separated 
  by distance L

- change in the vacuum state is detected by 
  the net permanent displacement ∆L

- the new vacuum is related to the old one by 
  a supertranslation

- to summarize the passage of GW radiation through I+ 
  changes the vacuum by a BMS transformation

Gravitational memory and BMS



  

- transit of GW radiation through a set of detectors 
  in the vicinity of the future null infinity I+

- detectors are located at large r
0
  and inserted 

  at different points on the sphere S2 separated 
  by distance L

- change in the vacuum state is detected by 
  the net permanent displacement ∆L

- the new vacuum is related to the old one by 
  a supertranslation

- to summarize the passage of GW radiation through I+ 
  changes the vacuum by a BMS transformation

Gravitational memory and BMS



  

Persistent observables

E.E. Flanagan, A.M. Grant, A.I. Harte, D.A. Nichols, Persistent gravitational wave observables: general framework,
Phys.Rev.D 99 (2019) 8, 084044



Evolution of SMBHBs

assuming circular binaries → time to coalescence can be expressed in terms of Keplerian 
parameters and chirp mass   M = (M

1
 M

2
 )3/5 / (M

1
 + M

2
 )1/5

τGW  =  
5c5

256G
 

ad
4

M 5/3 M tot
4 /3

establishing a
d
 is therefore akin to specifying the total time to binary coalescence :

                                                  t
burst

  =  t
gal

 + τ
GW

    where t
gal

 is the time between galaxy merger and SMBHB formation



GW spectrum



GW spectrum



GW spectrum



GW spectrum
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