Two-photon amplitude interferometry for precision astrometry:

Stankus, Nomerotsky, Slosar \& Vintskevich arXiv:2010.09100

Jim Rich
SPP-IRFU
CEA-Saclay
91191 Gif-sur-Yvette
james.rich@cea.fr

November, 2020

Two-photon amplitude interferometry for precision astrometry

Paul Stankus* Andrei Nomerotski, and Anže Slosar Brookhaven National Laboratory, Upton NY 11973, USA

Stephen Vintskevich
Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia

(Dated: October 20, 2020)
Improved quantum sensing of photon wave-functions could provide high resolution observations in the optical benefiting numerous fields, including general relativity, dark matter studies, and cosmology. It has been recently proposed that stations in optical interferometers would not require a phase-stable optical link if instead sources of quantum-mechanically entangled pairs could be provided to them, potentially enabling hitherto prohibitively long baselines. A new refinement of this idea is developed, in which two photons from different sources are interfered at two separate and decoupled stations, requiring only a slow classical information link between them. We rigorously calculate the observables and contrast this new interferometric technique with the Hanbury Brown \& Twiss intensity interferometry. We argue this technique could allow robust high-precision measurements of the relative astrometry of the two sources. A basic calculation suggests that angular precision on the order of 10μ as could be achieved in a single night's observation of two bright stars.

I. INTRODUCTION

Quantum phenomena are often strange and nonintuitive effects that happen only in the atomic world. At the core of them is entanglement, which has no counterparts in our classical world, and which is enabling new measurement techniques and devices beyond what can be achieved classically. The next technological frontiers will exoloit these quantum ohenomena to anoment sensitiv-

Paper brings up fascinating questions

Conceptual

- Amplitude interferometry vs. Intensity interferometry
- Coherent sources vs incoherent sources
- Classical fields vs. Quantum fields

Practical applications?

- Black Hole imaging
- Astrometric Microlensing
- Distance Ladder
- Peculiar motions, Galactic potential mapping

EHT image of black hole in M87

Angular resolution of EHT:

$$
\Delta \theta \approx \frac{\lambda}{B} \approx 10^{-10} \mathrm{r} \approx 20 \mu \operatorname{arcsec}
$$

where $\lambda \approx 1 \mathrm{~mm}$ and Baseline, $B \approx 10000 \mathrm{~km}$
3 order of magnitude improvement if this could be done at optical wavelengths, but current optical interferometers have $B<300 \mathrm{~m}$.

Gaia (not an interferometer): $\sigma \approx 10 \mu$ as for $m a g=15$

Amplitude interferometry

FIG. 1. Traditional stellar interferometry. A single photon from an astronomical source impinges on two detectors nearly simultaneously, with a phase difference determined by the difference in path lengths. The two optical paths are brought together across the baseline, where the photon's interference with itself depends on the path length difference and hence on the direction to the source. Inteferometry is generally sensitive to structures with angular scales on the order of $\Delta \theta \sim \lambda / B$ where B is the baseline length and λ is the photon wavelength.

$$
\begin{aligned}
& \text { Amplitudes of the signals from two } \\
& \text { receivers are combined coherently. } \\
& \text { Interference pattern is correlation } \\
& \text { vs receiver separation, } B
\end{aligned}
$$

Amplitude interferometry

FIG. 1. Traditional stellar interferometry. A single photon from an astronomical source impinges on two detectors nearly simultaneously, with a phase difference determined by the difference in path lengths. The two optical paths are brought together across the baseline, where the photon's interference with itself depends on the path length difference and hence on the direction to the source. Inteferometry is generally sensitive to structures with angular scales on the order of $\Delta \theta \sim \lambda / B$ where B is the baseline length and λ is the photon wavelength.

Amplitudes of the signals from two receivers are combined coherently. Interference pattern is correlation vs receiver separation, B
In spite of what is shown and said, the interference pattern here is for an TWO extended sources.

The source separation determines the separation of the maxima and the sizes of the two sources determines the cutoff in the envelope.

For optical light, requirement of creating a well-definted optical-path limits $B<300 \mathrm{~m}$.

Two-source interferometry

2010.09100 proposal:

Beam spliter and two detectors at each station

Traditional setup:
One detector at each station

Compare amplitudes or intensities from 2 stations

Classical fields are usually enough

Amplitude and Intensity interferometry can be pretty well understood using classical electromagnetic fields. Quantum mechanics is needed only for calculating the ejection of a photoelectron by an oscillating classical field.
(Because Einstein first used photons to explain the threshold for photoelectron production, physicists are often surprised by this.)
Much of the following comes from consulting my undergraduate textbook [Waves,Crawford, Berkeley Series, vol 3] which has a brilliant Berkeleyesque discription of the Hanbury-Brown-Twiss effect.

Interference pattern of 2 sources separated by θ

In astronomy, the two sources are general "incoherent":

$$
t_{c o h} \approx 1 / \Delta \nu
$$

Interference pattern of 2 sources separated by θ

Sinusoidal interference pattern on detector plane:

$$
E(x) \propto \sin \omega t \sin \left(\frac{x-x_{0}}{L}\right) \quad L=2 \pi \lambda / \theta
$$

x_{0} depends on relative phases of the two sources: it varies in time chaotically unless the two sources are phase-locked.
Correlation between two receivers separated by $d:$:

$$
E(x) E(x+d) \propto \sin ^{2} \omega t \sin \left(\frac{x-x_{0}}{L}\right) \sin \left(\frac{x-x_{0}+d}{L}\right)
$$

Interference pattern of 2 sources separated by θ

Correlation between two receivers separated by $d:$:

$$
E(x) E(x+d) \propto \sin ^{2} \omega t\left[\frac{1}{2} \cos \left(\frac{d}{L}\right)-\frac{1}{2} \cos \left(\frac{2 x-2 x_{0}+d}{L}\right)\right]
$$

For optical wavelengths, we necessarily average over t and x_{0} :

$$
\langle E(x) E(x+d)\rangle \propto \frac{1}{4} \cos \left(\frac{d}{L}\right) \quad L=2 \pi \lambda / \theta
$$

Plotting correlation vs $d / \lambda \Rightarrow$ angular separation, θ.

Intensity interferometry of 2 sources separated by θ

$$
E^{2}(x) E^{2}(x+d) \propto \sin ^{4} \omega t \sin ^{2}\left(\frac{x-x_{0}}{L}\right) \sin ^{2}\left(\frac{x-x_{0}+d}{L}\right)
$$

After averaging over t and x_{0}, this becomes

$$
\left\langle E^{2}(x) E^{2}(x+d)\right\rangle \propto \frac{1}{4}\left[1+\frac{1}{2} \cos \left(\frac{2 d}{L}\right)\right] \quad L=2 \pi \lambda / \theta
$$

Correlation can be done offline if two stations sychronised to a precision of $t_{c o h}$.
Mean correlation must be subtracted.

multi-source Amplitude interferometry

In spite of what is shown and said, the interference pattern here is for an TWO extended sources.

The source separation determines the separation of the maxima and the sizes of the two sources determines the cutoff in the envelope.
For one extended source (sum of many point sources), the fine scructure disappears, leaving only the envelope, with cutoff at $d / \lambda \approx 1 / \Delta \theta$ where $\Delta \theta=$ angular size of source.
(Correlation as a function of B is Fourier transform of source)

Stellar Radii from intensity interferometry

Fig. 2. Comparison between the values of the normalized relation coefficient $1^{12}(d)$ observed from Sirius and the theoret values for a star of angular diameter $0^{\circ} 0063^{\prime \prime}$. The errors shc are the probable errors of the observations

Hanbury Brown \& Twiss
 Nature (1956)

$\Rightarrow R_{\text {Sirius }} \approx 6.3 \mathrm{mas}$

Fig. 1. Simplified diagram of the apparatus

Stellar Radii from amplitude interferometry

4 T. R. White et al.

θ Cygni:
$R=0.753 \pm 0.009 \mathrm{mas}$
$B_{\max }=300 \mathrm{~m}$
arXiv: 1305.1934

Quantum calculation gives same answer

CE EFFECTS
541

Fig. 1. Lowest-order diagrams representing light emission by a pair of atoms and its absorption by another pair of atoms. The heavy dots indicate ground-state lines.
U. Fano [AmJPh, 1961]

Two interfering amplitudes
Sum amplitudes, square, then average over random phase between two sources.
\Rightarrow same result as classical calculation.

Quantum or classical: which is better?

People who thought in terms of photons were confused at first. Brannen and Fergusson [Nature, September, 1956]

Note added in proof. It would appear to the authors, and also to Prof. Jánossy (private communication), that if such a correlation did exist, it would call for a major revision of some fundamental concepts in quantum mechanics. This was, of course,
(They had forgotten that photons are bosons)
Purcell [Nature, December, 1956]
ment. Moreover, the Brown-Twiss effect, far from requiring a revision of quantum mechanics, is an instructive illustration of its elementary principles.
The classical EM description automatically includes bosonic effects

The arXiv:2010.09100 interferometer

4 counters (c,d,g,h) instead of 2 (L,R)

FIG. 3. The two-photon amplitude interferometer. Source 1 sends a photon which arrives as a plane wave at both input detectors "a" and "e". The path length difference leads to a phase offset of δ_{1}, and the photon is in an entangled state (e.g. we recommend Ref. [14-19] for details
$\Rightarrow 4$ correlations:
Symmetric: cg and dh
Asymmetic: ch and dg
we can write the expectation value for the total number of each type of coincidence:

$$
\begin{align*}
\langle N(x y)\rangle & =\frac{k\left(S_{1}+S_{2}\right)^{2}}{8}\left[1 \pm V_{2 \mathrm{PS}} \cos \left(\delta_{1}-\delta_{2}\right)\right] \\
V_{2 \mathrm{PS}} & \equiv \frac{2 S_{1} S_{2}}{\left(S_{1}+S_{2}\right)^{2}} \tag{13}
\end{align*}
$$

where the + obtains for the $c g$ and $d h$ combinations, and the - for $c h$ and $d g$; and $V_{2 \text { PS }}$ now indicates the two-point-source fringe visibility in the semi-classical approximation.
For $S_{1}=S_{2}$ we have $V_{2 p s}=1 / 2$ (in agreement with elemenatary formula for intensity interferometry.)

The arXiv:2010.09100 interferometer

FIG. 3. The two-photon amplitude interferometer. Source 1 sends a photon which arrives as a plane wave at both input detectors "a" and "e". The path length difference leads to a phase offset of δ_{1}, and the photon is in an entangled state (e.g. we recommend Ref. [14-19] for details

Symmetric-Antisymmetric coincidence difference

$$
\begin{align*}
O_{\mathrm{DSI}} & \equiv \frac{[N(c g)+N(d h)]-[N(c h)+N(d g)]}{N(c g)+N(d h)+N(c h)+N(d g)} \tag{16}\\
\left\langle O_{\mathrm{DSI}}\right\rangle & =V_{2 \mathrm{PS}} \cos \left[\frac{2 \pi B}{\lambda}\left(\sin \theta_{1}-\sin \theta_{2}\right)+\frac{2 \pi \Delta L}{\lambda}\right]
\end{align*}
$$

As expected, we can see that the double-source interferometry observables $\langle N(x y)\rangle$ and $O_{\text {DSI }}$ are directly sensitive to the difference in the sky positions between the two sources, and thus to their relative astrometry.

arXiv:2010.09100: Quantum \neq Classical ?

FIG. 3. The two-photon amplitude interferometer. Source 1 sends a photon which arrives as a plane wave at both input detectors "a" and "e". The path length difference leads to a phase offset of δ_{1}, and the photon is in an entangled state (e.g. we recommend Ref. [14-19] for details

Equation (30) connects the two-photon count rates after interference to information on the two sources' relative positions; we can re-cast the observed pair coincidences in the following form:

$$
\begin{equation*}
N_{c}(x y) \propto\left[1 \pm V \cos \left(\frac{\omega_{0} B\left(\sin \theta_{1}-\sin \theta_{2}\right)}{c}+\frac{\omega_{0} \Delta L}{c}\right)\right] \tag{32}
\end{equation*}
$$

where V is the fringe visibility, also discussed in detail later in Section VI In the case of very narrow frequency filter with $\Delta \omega \rightarrow 0$, we can write the fringe visibility V in accordance with 30,31 and 28 as follows:

$$
\begin{equation*}
V=\frac{2 I_{1} I_{2} \xi_{1} \xi_{2}}{\left(I_{1}+I_{2}\right)^{2}+\left(I_{1} \xi_{1}\right)^{2}+\left(I_{2} \xi_{2}\right)^{2}} \tag{33}
\end{equation*}
$$

where we put $\xi_{j} \equiv \xi_{j}\left(\frac{\omega_{0} B}{c} \cos \theta_{j}\right)$ for simplicity. Equation (33) is now the full visibility including extended sources and all quantum effects, generalizing the semiclassical, two-point-source visibility described earlier in Section IV

Two extra terms in (33) give $V=1 / 3$ for $I_{1}=I_{2}$ and $\xi_{1}=\xi_{2}=1$!

Precision for $\Delta \theta=$ separation of two stars

Strategy: Count fringes as the two stars move across the sky.
Example:
2 stars of magnitude 2
stellar angular diameter $=0.5$ mas
$\lambda=1 \mu \mathrm{~m}$
$T_{o b s}=10^{4} \mathrm{sec}$
200 meter baseline
$1 m^{2}$ effective collecting area
photon coincidence window 0.15 ns
filter bandwidth $\Delta \nu=1 \mathrm{Ghz}$
4×10^{4} bands
$\Rightarrow \sigma_{\Delta \theta}=10 \mu \mathrm{as}$

Summary

- Interesting generalization of HBT intensity interferometry \Rightarrow Simpler mean correlation subtraction
- Extension of visible photon interferometry to 1000 km baselines?
- Is this quantum or classical?

