

 Contact theories EFT

- Universality

Emergent four-body parameter in universal two-species bosonic systems PLB 408 (2021)

Multi-fermion systems with contact theories, PLB 816 (2021)

Triple-X and beyond: PRD 103 (2021)

- Hadrons: minimal theory for systems hard to be created experimentally
- Atoms: building new universal systems
- Nuclei: challenges of contact EFT in the many-body sector

Approaches to theoretical nuclear physics: (100 ys of nuclear physics)

- + Understanding of the **mechanisms** of nuclear proprieties;
- + Support to **experiments**;
- + **Precision description** of nuclear observables;

Universality

Séminaires du DPhN 8/10/2021

Universality: a simple concept hard to be defined

Systems in the same universality class behave similarly.

They share the same qualitative **observables**:

- Particle **statistics;** (Fermions, bosons)
- Critical exponents;
- Scattering parameters;
- Number and nature of **quantum states** (same resonances, bound, and virtual states).

Despite having different typical size and microscopic structure.

An example of universality – unitarity (2-body only)

Unitarity: **The size of a nonrelativistic quantum two-body system** much larger than the **range** of the **interaction** between particles.

An example of universality – unitarity (2-body only)

(the **size of a nonrelativistic quantum two-body system** is much larger than the interaction range between particles)

Systems close to the **Unitary limit** can be found in

- Atomic physics (Feshbach resonances, ${}^{6}Li {}^{6}Li$, ${}^{40}K {}^{40}K$ atoms)
- **Nuclear physics** (n p interaction)
- **Hypernuclei** $(\Lambda n \text{ interaction})$
- Hadronic physics (X(3872) Particles)

Atoms (experiments): C.A. Regal (2003) M.W. Zwierlein (2003) M. E. Gehm (2003) J. T. Stewart (2007)

Nuclei (theory): U. van Kolck (1999) S. König (2017)

Hypernuclei (theory): H.-W. Hammer (2001) L.C. (2018)

Hadrons (theory):

One of the most known and fascinating consequence of unitarity is the

Thomas Collapse / Efimov Effect

In the **unitary limit** a system of **3 bosons/distinguishable particles collapses** $r_0 \rightarrow 0 \implies E_3 \propto -\left|\frac{1}{r_0^2}\right|$

A repulsion is needed to stabilize the system to a finite energy E_3 . E_3 breaks the scale invariance of the system!

i.e. you have to choose the scale of your system (K, eV, MeV ...)

Discrete scale invariance: 3+ body

Simple and intuitive: Contact theory

- Treat particles as degrees of freedom (elementry particles)
- They can interact only **short-range**

(Short range structure is irrelevant: no quark structure)(Long range interactions are negligible: no pion exchange)

• Works for a limited set of energies

- Easy to understand
- Clear limitations
- Expandible
- Minimal inputs required
- Universally transposable

Simple and intuitive: Contact theory

- Treat particles as degrees of freedom (elementary particles)
- They can interact only **short-range**

(Short range structure is irrelevant: no quark structure)(Long range interactions are negligible: no pion exchange)

- Works for a limited set of energies
- Tricky to be properly implemented
- Clear limitations only in the known cases
- Not trivial to be practically expanded beyond 1st order
- Minimal inputs required at the first orders

• Easy to understand

- Clear limitations
- Expandible
- Minimal inputs required
- Universally transposable

A complete theory

 $r_{ij} = r_i - r_j$ $V(r_{ij}) = \delta(r_{ij})$

Contact theory formally:

$$L = N^{\dagger} \left(i \partial_0 + \frac{\hbar^2}{2m} \nabla^2 \right) N - C_0 N^{\dagger} N^{\dagger} N N$$

A complete theory

 $r_{ij} = r_i - r_j$ $V(r_{ij}) = \delta(r_{ij})$

Contact theory formally:

$$L = N^{\dagger} \left(i \partial_0 + \frac{\hbar^2}{2m} \nabla^2 \right) N - C_0 N^{\dagger} N^{\dagger} N N$$

$$L^{N^{>0}LO} = C_2 \left(N^{\dagger} \nabla^2 N N^{\dagger} N + h.c. \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_4 \left(N^{\dagger} \nabla^4 N N^{\dagger} N + h.c. \right) + ... + D_0 \left(N^{\dagger} N^{\dagger} N^{\dagger} N^{\dagger} N N \right) + E_0 \left(N^{\dagger} N^{\dagger} N^{\dagger} N^{\dagger} N N \right) + ...$$

A complete theory

 $r_{ij} = r_i - r_j$ $V(r_{ij}) = \delta(r_{ij})$

Contact theory formally:

$$L = N^{\dagger} \left(i \partial_0 + \frac{\hbar^2}{2m} \nabla^2 \right) N - C_0 N^{\dagger} N^{\dagger} N N$$

$$L^{N^{>0}LO} = C_2 \left(N^{\dagger} \nabla^2 N N^{\dagger} N + h.c. \right) + C_{11} \left(N^{\dagger} \vec{\nabla} N N^{\dagger} \vec{\nabla} N \right) + C_4 \left(N^{\dagger} \nabla^4 N N^{\dagger} N + h.c. \right) + ... + D_0 \left(N^{\dagger} N^{\dagger} N^{\dagger} N^{\dagger} N N \right) + E_0 \left(N^{\dagger} N^{\dagger} N^{\dagger} N^{\dagger} N N \right) + ...$$

Including all the derivative/many-body operators one can **express any interaction**

Séminaires du DPhN 8/10/2021

Pionless EFT powercounting

Pionless EFT powercounting

G.P. Lepage, How to renormalize the Schrödinger equation (1997)
U. van Kolck, Nucl.Phys. A645 273-302 (1999)
J.-W. Chen, et al. Nucl.Phys. A653 (1999)
S. König, H. W. Grießhammer, H. W. Hammer, and U. van Kolck, J. Phys. G43, 055106 (2016)
B. Bazak, PRL 122.143001 (2019)
Séminaires du DPhN 8/10/2021

Contact Renormalizability

The Lagrangian can be transformed into a Hamiltonian that may be used in many-body calculations

$$H^{LO} = -\frac{\hbar^2}{2m} \sum_{i} \nabla^2 + \sum_{ij} C_0 \,\delta\left(\vec{r_i}, \vec{r_j}\right) + \sum_{ijk} D_0 \,\delta\left(\vec{r_i}, \vec{r_j}, \vec{r_k}\right)$$

Regularize the interaction to smear the contact interactions

$$H^{LO} = -\frac{\hbar^2}{2m} \sum_{i} \nabla^2 + \sum_{ij} C^{\lambda} e^{-\frac{\lambda^2 r_{ij}^2}{4}} + \sum_{ijk} D^{\lambda} \sum_{cyc} \left[e^{-\frac{\lambda^2 (r_{ij}^2 + r_{ik}^2)}{4}} \right]$$

Renormalization fixes the dependence of C_{λ} and D_{λ} to observables C^{λ} and D^{λ} fitted on **two- and three-body observables**.

If $\lambda \to \infty$ any observable becomes λ independent

Approaches to Renormalizability approach

Puristic: the cut-off is a **mathematical entity** and should be taken to infinity. Cut-off dependence -> intrinsic problems in the theory. **Realistic :** the cut-off take a **physical connotation**. each theory has a right cut-off to be used, usually at the break-down scale. break-down scale: energy of the lightest not-included particle in the theory. e.q pion exchange in pionless theory. A theory **should be renormalizable**, but practically you use a physical **finite cut-off**. The cut-off can represent a physical scale or have some intrinsic advantages.

Q – typical system momentum λ – cut-off 20

Séminaires du DPhN 8/10/2021

It is usually in agreement with the Puristic approach up to $\sim Q/\lambda$

Practical :

Duality universality (contact) EFT (nonrelativistic) $\mathcal{L} = N^{\dagger} \left(\partial_0 + \frac{\nabla^2}{2m} \right) N +$ Unitary limit: $a_0 = \infty$ $r_0 = 0$ Finite three-body scale: $0 > E_3 > -\infty$ $+ C_0 N^{\dagger} N^{\dagger} N N + D_0 N^{\dagger} N^{\dagger} N^{\dagger} N N N$ However, no physical system is perfectly in the unitary limit S. König (2016) $N^n LO$ Physical systems can be close to the limit: e.g. $|a_{n-n}| = (|-23.| \text{ fm}) \gg (r_0 \sim 2.7 \text{ fm})$ Effective field theory **powercounting** i.e. subleading perturbative corrections **Deviation from the universal limit** define the specific physical system. are needed to predict physical phenomena.

Examples of universality

V. Efimov (1970)

When a E_3 scale is introduced (maintaining the unitary limit):

A tower of states appears with universal ratios between them
 All the observables are related to the new scale only

Examples of universality

Calculations done with **few-body stochastic variational diagonalization method**: Y. Suzuki, K. Varga (2003) ²⁴

L. C., N. Barnea, and A. Gal Phys. Rev. Lett. **121**, 102502

Belle collaboration (2003) LHCb (2013)

 $\mathcal{D}-\overline{\mathcal{D}}$ interaction is **unitary**

It can be expressed with a contact theory

∄ 3b experiment to fix the three-body scale

We use a **physical cut-off** (we already know that the theory is renormalizable from **nuclear physics**)

The **range of the interaction** (our cut-off) is between 1 and 2 fm

We **predict** the 2-, 3-, and 4-X systems (4-, 6-, and 8-body) **X(3872)**: Boson, $J^{PC} = 1^{++}$ Mass ~ 3872.68 MeV No charge

Belle collaboration (2003) LHCb (2013)

We can use contact EFT for this interaction! We can't fix a three-body scale/system: we have to take a practical approach

 $\mathcal{D}-\overline{\mathcal{D}}$ interaction is **unitary**

It can be expressed with a **contact theory**

∄ 3b experiment to fix the three-body scale

We use a **physical cut-off** (we already know that the theory is renormalizable from **nuclear physics**)

The **range of the interaction** (our cut-off) is between 1 and 2 fm

We **predict** the 2-, 3-, and 4-X systems (4-, 6-, and 8-body) **X(3872)**: Boson, $J^{PC} = 1^{++}$ Mass ~ 3872.68 MeV No charge

Belle collaboration (2003) LHCb (2013)

E. Braaten and M. Kusunoki (2004); J. Nieves and M. P. Valderrama (2012);

Belle experiment (2003) LHCb collaboration (2013)

 \mathcal{D}

 $\overline{\mathcal{D}}$

X(3872): Boson, $J^{PC} = 1^{++}$ Mass ~ 3872.68 MeV No charge

 $\overline{\mathcal{D}}$

 \mathcal{D}

 \mathcal{T}

 \mathcal{D}

 $\overline{\mathcal{D}}$

 \mathcal{D}

 $ar{\mathcal{D}}$

 $\overline{\mathcal{D}}$

3 X

4 X

30

 $\mathcal{D}-\overline{\mathcal{D}}$ interaction is **unitary**

It can be expressed with a **contact theory**

∄ 3b experiment to fix the three-body scale

We use a **physical cut-off** (we already know that the theory is renormalizable from **nuclear physics**)

The **range of the interaction** (our cut-off) is between 1 and 2 fm

We **predict** the 2-, 3-, and 4-X systems (4-, 6-, and 8-body)

Partial Conclusions

With a simple theory and only knowing

- That $\mathcal{D} \overline{\mathcal{D}}$ interaction is universal
- The range of such interaction

Predict **bound** 3X, 4X (qualitative prediction)

2*X* is **uncertain** (bound only for certain cut-offs)

Building a new system in a universality class

Unitary interactions

Particles

Efimovian U.C. and distinguishable particles

Dashed lines represent contact unitary interactions

Efimovian U.C. and distinguishable particles

Dashed lines represent contact unitary interactions

It is Efimovian

The **Efimov factor is 22.6** The n-excited state energy is $E_n = (22.6)^{2 n} E_0$

Where E_0 is fixed by the three-body coupling constant

It is also Efimovian

The Efimov factor is 1986.1 The n-excited state energy is $E_n = (1986.1)^{2 n} E_0$

Where E_0 is fixed by the three-body coupling constant

Efimovian U.C. and distinguishable particles

$$H = -\frac{\hbar^2}{2m} \sum_{i} \nabla^2 + \sum_{ij} C^{\lambda} e^{-\frac{\lambda^2 r_{ij}^2}{4}} + \sum_{ijk} D^{\lambda} \sum_{cyc} \left[e^{-\frac{\lambda^2 (r_{ij}^2 + r_{ik}^2)}{4}} \right]$$

 $CO = C^{\lambda}$ fitted to have a unitary two-body system Regardless the used cut-off.

 $D0 = D^{\lambda}$ is fitted to have a finite 3-dandelion/circle energy (m is the mass of the particles)

Renormalization

If I use the 3B repulsion that stabilize → On↓	 ∧		NO REPULSION AT ALL
 ∧	System properly renormalized $E_{\Delta}^{\lambda} = 0.01$	Too soft repulsion: $E_{\Delta}^{\lambda} \propto \lambda$ (empirical relation)	Thomas collapse: $E_{\Delta}^{\lambda} \propto \lambda^{2}$
R 	Too much repulsion: System unbound	System properly renormalized $E_{\Lambda}^{\lambda} = 0.01$	Thomas collapse: $E_{\Lambda}^{\lambda} \propto \lambda^{2}$

Bad renormalization

Using D^{λ}_{Δ} that renormalizes Δ on Λ is too repulsive and no boundstate is found

Standard 4-b system: Complete

Which three-body force and behaviour does stabilize this system?

Standard 4-b system: Complete

Which three-body force and behaviour does stabilize this system?

4-/5-Dandelion

Ŭ ndel lion \mathbf{G} onverg ence

Circl \mathbf{P} divergence

Circl \mathbf{P} convergence

Appearance of a 4-body scale

This sufficies to define the 3- and 4-dandelions

The 4-circle needs a different 3-body force: A much more repulsive counterterm.

We can not redefine the «ABB/AAB» 3-body force! (it would spoil the Lambda renormalization!)

We need a four-body force that acts only on AABB bosons/system!

Physical system realization

Phys. Rev. D **103**, 056001

Atomic molecules with Feshbach resonances:

 85 Ru - 87 Ru [S. B. Papp and C. E. Wieman 2018] 23 Na - 39 K [Torsten Hartmann et al. 2019] *Hadronic systems*.

 $D^0 - \overline{D}^0 = X(3872)$ [S. K. Choi et al. (Belle col.) 2003]

They are **mass imbalanced** systems (Efimov ratios are different).

The **scattering length** in-between same species Is much smaller than the interspecies one.

The three-body system is unknown.

(it should be compared with the same-species scattering length)

Experiments are done with **many molecules** $(10^7 - 10^9 \text{ atoms})$.

 D^0 and \overline{D}^0 have an excitation: $D^0 *$ and $\overline{D}^0 *$ So the problem becomes a **coupled channel** problem (it has further complications).

Very **hard to be created** in laboratory: done up to 4 hadrons.

The three-body system is unknown.

«Delta» Efimov factor 22.6

«Lambda» Efimov factor 1986.1

Partial Conclusions

- If there is at least one close loop, the system universality class is the «Delta» one.
 In this case, the energy for few-bodies can be calculated approximatively as the number of deltas in the system.
- It follows that a **four-body scale** appears in 2-specie bosonic 4-circle (AABB).
 Many questions on this scale and renormalization are still to be answered.
- Renormalizability depends also on the geometry, not only on the kind of particle present.
- This can be, in principle, reproduced in **atomic systems.**

50

Nuclear systems and P-wave

Nuclear systems and P-wave

100

A practical example: few nucleons

A practical example: few nucleons

Everything works great with Pionless EFT up to 4-nucleons.

¹⁶0 - Monte Carlo calculation

Phys.Lett.B 772 (2017) 839-848

S-wave system		l	P-wave system	
Λ [fm ⁻¹]	⁴ He Energy [MeV]	Λ [fm ⁻¹	¹⁶ 0] Energy [MeV]	4α treshold [MeV]
2	-23.17(2)			
4	-23.63(3)	2	-97.19(6)	-92.68(8)
6	-24.06(2)	4	-92.23(14)	-94.52(9)
8	-26.04(5)	6	-97.51(14)	-100.24(8)
∞	$-30_{2.0(stat)}^{0.3(sys)}$	8	-100.97(20)	-104.2(2)
Exp	-28.296	∞	$-115^{1(sys)}_{8(stat)}$	$-120^{1(sys)}_{8(stat)}$

- All the errors shown are statistical errors from Monte Carlo method.

Séminaires du DPhN 8/10/2021

Oxygen density ($m_{\pi} = 140 \text{ MeV}$)

Phys.Lett.B 772 (2017) 839-848

Multi-fermion systems with contact theories, PLB 816 (2021)

5He 6He

J. Kirscher, H. W. Grießhammer, D. Shukla, H. M. Hofmann: arXiv:0909.5606

Breaks in $\alpha + n$ and $\alpha + n + n$

40Ca QMC calculation suggests the breaking in: Breaks in $\alpha + \alpha + \alpha + ...$

P-wave systems In a shell model representation Relation between shell model and magic numbers 1g_{7/2} 8 1g_{9/2} 10

Will they ever bind?

Long story short: no

Multi-fermion systems with contact theories, PLB 816 (2021)

One little step further is necessary:

If a resonance is close to the **threshold**, it might be possible to move it with a **subleading correction** (there is no proof this is possible, nor proof this is not possible) Known **three-fermion** case: No physical resonance is found.

No scale invariance breaking, Three-body force might change picture.

4H resonance: the minimal nuclear system with an Efimovian component

Contact EFT: a sub-threshold resonance is present

Contact theory

- → everything fine in **S-wave**
- → no P-wave boundstates

A resonance is found in ${}^{4}H \rightarrow many-body P-shell poles can be created (not in the correct physical position)$

Can the resonant pole be moved to the bounded region with a **perturbative** NLO insertion?

Séminaires du DPhN 8/10/2021

Séminaires du DPhN 8/10/2021