Report on Moriond Gravitation session 2022

Antoine Petiteau with the help of Quentin Baghi DPhP 22 May 2022

Overview

- Gravitational Waves (GW) (7/14 sessions):
 - Sources and waveforms
 - Searches in available data: PTA and LIGO-Virgo-Kagra
 - Observatories: LIGO-Virgo-Kagra, LISA, ET, very high frequency
- Gravitation with cold atoms ($\sim 2/14$ sessions)
- ► Test of equivalence principle (1/14 session)
- Test of Gravitation ($\sim 0.5/14$ session)
- ► Dark matter (~ 0.5/14 session)
- ► Neutrons and Anti-hydrogen (1/14 session)
- ► Theory (2/14 sessions)

GW: sources, waveforms, population

Stochastic backgrounds

[A. Roper Pol] Impact of primordial magnetic filed in the early Universe on first order phase transition backgrounds => constrain on the primordial magnetic field with PTA observations.

GW: sources, waveforms, population

- Binaries:
 - Eccentricity for BH binaries: [A. Ramos-Buades] Development of waveform with eccentricity and multiple harmonics in the Effective One Body approach.
 - Magnetic field in white dwarf binaries:
 [A. Bourgoin] possibilities to measure it with LISA.
- Importance of the LISA and PTA observations to constrain the population of SMBHBs and the formation models [M. Curylo]

GW: searches in available data

Stochastic GW backgrounds (SGWB) :

- Importance of SGWBs for astrophysics and cosmology. Hope in future detectors.
- With PTA:
 - Evidence of common red-noise in EPTA.
 [A. Chalumeau]
 - On-going search for anisotropies. [Y. Ali-Haimoud]
- With LVK:
 - No detection in LVK O3 but constrains. BH Binaries background should be detected in the coming years. [T. Regimbau]
 - Upper limit with multiple components for the anisotropic background. [J. Suresh]

				Max	SNR (% p	-value)	nge (10^{-9})	
α	Ω_{GW}	H(f)	HL(O3)	HV(O3)	LV(O3)	O1+O2+O3 (HLV)	O1+O2+O3 (HLV)	O1 + O2 (HL
0	constant	$\propto f^{-3}$	1.6 (78)	2.1(40)	1.5 (83)	2.2 (43)	3.2-9.3	7.8-29
2/3	$\propto f^{2/3}$	$\propto f^{-7/3}$	3.0 (13)	3.9 (0.98)	1.9 (82)	3.7(1.7)	1.9-9.7	6.5 - 25
3	$\propto f^3$	$\operatorname{constant}$	3.9 (12)	4.0 (10)	3.9 (11)	3.2 (60)	0.56 - 3.4	1.9–11

GW: searches in available data

- Compact Binaries Coalescing (LVK):
 - Overview talks about particular sources from the LVK catalogs [S.
 Fairhurst]: detection of higher harmonics, NS-BH, statistic on population.
 - Search for new compact objects. [M. Edwards]
 - AGN flares counterpart of BBH in galaxy centres? [A. Palmese]
 - 3 bodies interactions [A. Palmese]
 - Deformability of Neutron Stars [A. Perot]

01 RUN 2015 - 2016	G 7		02 2016 - 2017		Dbse	erva	tior	15			03a+b 2019 - 2020	
• • • 31	23 • 14	14 77	31 20	11 7.6	50 34	35 24	31 25	15 13	35 27	40 29	B8 22	25 18
63 CW150914	36 cw151012	21 CW151226	49 GW170104	18 cw170608	80 cw170729	56 cw170809	53 GW170814	≤ 2.8 cw170817	60 CW170818	65 GW170823	105 cw190403_051519	41 cw190408_181802
30 83	35 24	48 3 2	41 32	2 14	107 77	43 28	23 13	36 18	39 28	37 25	66 41	95 69
37 GW190412	56 CW190413_052954	76 CW190413_134308	70 CW190421_213856	3.2 CW190425	175 GW190426_190642	69 CW190503_185404	35 GW190512_180714	52 CW190513_205428	65 CW190514_065416	59 CW190517_055101	101 GW190519_153544	156 GW190521
42 3 3	37 23	⁶⁹ • ⁴⁸	57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7.8	12 6.4	38 29
71 CW190521_074359	56 cw190527_092055	111 CW190602_175927	87 cw190620_030421	56 cw190630_185205	90 cw190701_203306	99 GW190706_222641	19 cw190707_093326	30 GW190708_232457	55 GW190719_215514	20 cw190720_000836	17 CW190725_174728	64 cw190727_06033:
12 8.1	42 29 29	37 27	48 32	23 2.6	32 26	24 10	44 36	35 24	44 24	9.3 2.1	8.9 5	21 16
20 cw190728_064510	67 cw190731_140936	62 CW190803_022701	76 cw190805_211137	26 CW190814	55 CW190828_063405	33 cw190828_065509	76 GW190910_112807	57 CW190915_235702	66 GW190916_200658	11 GW190917_114630	13 CW190924_021846	35 CW190925_23284
40 23	81 24	12 7.8	12 7.9	11 7.7	65 47	29 5.9	12 8.3	53 °24	11 6.7	27 19	12 82	25 18
61 cw190926_050336	102 cw190929_012149	19 CW190930_133541	19 cw191103_012549	18 GW191105_143521	107 GW191109_010717	34 cw191113_071753	20 GW191126_115259	76 cw191127_050227	17 cw191129_134029	45 GW191204_110529	19 GW191204_171526	41 GW191215_223057
12 7.7	31 1.2	⁴⁵ • ³⁵	⁴⁹ • ³⁷	9 1.9	³⁶ ²⁸		42 33	34 29	10 7.3	38 27	51 12	36 27
19 GW191216.213338	32 GW191219_163120	76 CW191222_033537	82 GW191230_180458	11 GW200105_162426	61 GW200112_155838	7.2 GW200115_042309	71 GW200128_022011	60 CW200129_065458	17 GW200202_154313	63 GW200208_130117	61 GW200208_222617	60 cw200209_08545
24 2.8	51 0 30	³⁸ ²⁸	87 GI	³⁹ • ²⁸	40 0 33	19 14	38 20	28 15	36 14	34 28	13 7.8	34 14
27 cw200210_092254	277 78 62 141 64 69 32 56 42 47 59 20 2012 2012 2012 2012 2012 2012 2012											
mage start and more start of the start of th												

GW: searches in available data

- SuperMassive Black Hole binaries
 - Search with IPTA [M. Falxa]: discussion about the nature of observed features.
- Cosmology with GWs:
 - Constrain on H0 from LVK O3 [S. Mastrogiovanni]

- Modified gravity and cosmology with dark sirens [S. Mancarella & F. lacovelli]
- Multimessenger:
 - Targeted searches

 associated to GRBs:
 no detection but
 exclusion distance
 J.G. Ducoin

 $\int_{C} \int_{C} \frac{dz'}{\sqrt{\Omega_{M}(1+z')^{3} + \rho_{DE}(z',w_{0},w_{a})/\rho_{0}}}$ $\int_{C} \int_{C} \int_{C} \int_{C} \int_{C} \int_{C} \frac{dz'}{\sqrt{\Omega_{M}(1+z')^{3} + \rho_{DE}(z',w_{0},w_{a})/\rho_{0}}}$ $\int_{C} \int_{C} \int_{C$

GW: current ground based obs.

- Virgo: update on upgrade; O4
 plan to December 2022 [A.-M.
 Bizouard]
- Frequency dependent squeezing
 [A.-R. Schnabel]

03

AdV+

Phase I

04

AdV+

Phase II

05

GW: Einstein Telescope

- Status of the project [T. Bulik]:
 - Localisation will be decided in 2 years with building starting in 2026
 - Possible multi-wavelength with LISA
- They are starting to work on data analysis using mock data, etc. [N. Singh]
- Constrain on pop.
 of compact objects
 [T. Bulik]

GW: LISA

- Status of the mission [A. Petiteau]
- LISA Data Challenges [Q. Baghi]
- Time Delay Interferometry (on ground processing of noises):
 - New version of the TDI algorithm working directly from the unsynchronised data [O. Hartwig]
 - Use of specific TDI channel for noises characterisation: new null channel [M. Muratore]
- LISA Pathfinder results and update on the on-going analysis (low frequency excess noise, long-lasting glitches, etc) [L. Sala]

Report Moriond Gravitation 2022 - A. Petiteau - DPhP - 22th April 2022

GW: Other observatories

- MIGA: GW Obs. With atom interferometry [B. Canuel]:
 - Infrastructure and main elements ready
 - Assembly and commissioning
 - Starts mid-2022
- Ultra-high frequency GW from graviton to photon conversion (axion-like partial experiments) [A. Ejlli]; sources: primordial BH evaporation, Sun

Report Moriond Gravitation 2022 - A. Petiteau - DPhP - 22th April 2022

Gravitation with cold atoms

- AION (Atom Interferometer Observatory and Network) & AEDGE [O. Buchmueller]:
 - space mission: pair of satellites with very long baseline; long-term but roadmap at ESA
 - GW & Ultra-Light Dark Matter
- CARIOQA [P. Wolf & Q. Beaufils]: space mission for cold atom interferometer; seconds long interferometers; accelerometer

Test of Gravitation

- ► With pulsars:
 - The double pulsars agrees with GR; No dipolar GW emission [P. Freire] -
 - Pulsar in triple systems + planets

 (?): test strong equivalence
 principle [G. Voisin]
- With planets ephemerides [A.
 Fienga]: INPOP in the frame of the BepiColombo mission:
 - Massive graviton
 - Massless dilaton

Test of Gravitation

- Galactic center, GRAVITY@VLT [G.
 Perrin]: constrains from stars orbiting around SgrA*: test of relativistic precession:
 - Einstein confirmed at 7 sigma
 - \bullet Extended mass less than 0.1 %
- Using the catalog LVK O3 [A. Ghosh]: 9 different methods, in particular the test of the BH ringdown: no detection of significant deviation from GR.
- Test using QuasiNormal Modes [F.
 Bombacigno]

Test of equivalence principle

- MICROSCOPE [Q. Baghi]: final results using 1642 orbits to be published (first results published over 120: 1.9e-14)
- Interesting discussion about the need to go deeper in precision for the tests of equivalence principle [P. Wolf]: hypothesis of equivalence, not a fundamental symmetry
- Tests with atomic clocks and atom interferometer [F. Di Pumpo & P. Asenbaum]
- Test around Super Massive Black Hole using stars orbiting around SgrA* [A. Hees]:
 - Relativistic redshift consistent with GR
 - No variation of fine structure constant

 $\eta_{AB} = 2 \, \frac{a_A - a_B}{a_A + a_B}$

Class	Elements	η	Year [ref]	Comments		
	Be - Ti	2×10^{-13}	2008 [67]	Torsion balance		
Classical	Pt - Ti	1×10^{-14} 2017 [4] MICROSCOP		MICROSCOPE first results		
Classical	Pt - Ti	(10^{-15}) 2019+ MICROSCOPE full		MICROSCOPE full data		
	$M_A - M_B$	10^{-17}	2035 +	Adv. MICROSCOPE,		
-				macroscopic masses M_i TBD		
	^{133}Cs - CC	7×10^{-9}	2001 [69]	Atom Interferometry		
Hybrid	⁸⁷ Rb - CC	7×10^{-9} 2010 [70] and macroscopic corner		and macroscopic corner cube		
	$At_A - M_B$	10^{-17}	2035 +	Adv. MICROSCOPE,		
				atomic species At_A TBD		
	³⁹ K - ⁸⁷ Rb	5×10^{-7}	2014 [71]	different elements		
	⁸⁷ Sr - ⁸⁸ Sr	2×10^{-7}	2014 [72]	same element, fermion vs. boson		
Quantum	⁸⁵ Rb - ⁸⁷ Rb	3×10^{-8}	2015 [73]	same element, different isotopes		
	⁸⁵ Rb - ⁸⁷ Rb	3.8×10^{-12}	2020 [74]	> 10 m tomore		
	⁸⁵ Rb - ⁸⁷ Rb	(10^{-13})	2020+[75]	\geq 10 m towers		
	¹⁷⁰ Yb - ⁸⁷ Rb	(10^{-13})	2020+[76]			
	⁴¹ K - ⁸⁷ Rb	10^{-17}	2035 +	Atom Interferometry mission		
Antimatter	ntimatter \overline{H} - H (10 ⁻²) 2020+ [77		2020+[77,78]	under construction at CERN		

Dark matter

- On going study of the GAIA data to test the existence of a sea of DM particles surrounding the Galaxy [B. Famaey]: complex modelling !
- Search DM using the Galileo satellites [P.
 Delva]: DM transients, evidence for high SNR events but systematics need to be studied
- With interferometers:
 - Direct limits for Scalar Field DM from the GEO600 GW detectors [S.M. Vermeulen]
 - Search for ultra-light bosons of spin 2 which looks like persistent quasi-monochromatic GW
 [F. Urban]
 - Holometer: correlated Michelson interferometers [L. Aiello]

Neutrons and Anti-hydrogen

- GBAR [P. Blumer]: "quantum free fall" of anti-hydrogen: status and plans
- ► qBounce [J. Bosina, J Micko]: Gravity Resonance Spectroscopy using Ultracold neutrons: ongoing measurements and analysis ($\delta g/g \sim 10^{-4}$)
- AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy), test weak EP using anti-atoms [R. Caravita]: status and prospects: work in progress on higher rate of H
 *, pulsed beam of low energy H
 *, ...

Theory

- ► Talks on multiple theories, modified gravity, boson stars, ...
- Quentin's highlight on theory talks:
 - Proposition on entangled relativity which reinforces the link between matter and gravitation [O. Minazzoli]
 - The big bang could not be a singularity, but simply a bounce. For that we would need to observe a non-zero curvature of the universe (not favored by Plank) + an inflation mechanism. [C. Renevey]

Thanks!