Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

Séminaires du DPhP, IRFU-CEA 27 March, 2023

Federica Bradascio (IRFU-CEA)

Optical

Multimessenger astronomy

MULTIMESSENGER SOURCE

COSMIC RAYS

Charged particles, deflected by magnetic fields

Federica Bradascio

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

GRAVITATIONAL WAVES

GAMMA RAYS

Point to their sources, but can be absorbed and created by multiple emission mechanisms

Earth

air shower

NEUTRINOS

Weak, neutral particles, point to their sources, Not deflected, not absorbed

5,160 Digital Optical Modules (**DOMs**)

86 strings with 60 DOMs each: **IceCube** 8 denser strings: **DeepCore**

1 km² surface array with 324 DOMs: **IceTop**

Neutrino event signature

Tracks

 $\nu_{\mu} + N \rightarrow \mu + X$

Good angular resolution 0.1-1 deg Neutrino astronomy

Federica Bradascio

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

Cascades

 $\nu_X + N \rightarrow \nu_X + X, \ \nu_e + N \rightarrow e + X$ Fully active calorimeter **Good energy resolution ~15%**

Neutrino event signature

Tracks

 $\nu_{\mu} + N \rightarrow \mu + X$

Good angular resolution 0.1-1 deg Neutrino astronomy

Federica Bradascio

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

Cascades

 $\nu_X + N \rightarrow \nu_X + X, \quad \nu_e + N \rightarrow e + X$

Fully active calorimeter Good energy resolution ~15%

Neutrino event signature

Tracks

 $\nu_{\mu} + N \rightarrow \mu + X$

Good angular resolution 0.1-1 deg Neutrino astronomy

Federica Bradascio

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

Cascades

 $\nu_X + N \to \nu_X + X, \quad \nu_e + N \to e + X$

Fully active calorimeter Good energy resolution ~15%

Astrophysical diffuse TeV-PeV neutrinos In the multimessenger picture

Federica Bradascio

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

Similar energies in y-rays, neutrinos and CRs injected into our Universe!

How to search of neutrino sources?

How to search of neutrino sources?

ATMOSPHERIC BACKGROUND * O(10⁵) v yr⁻¹

Muon neutrino events using **9.5yr** of IceCube data

How to search of neutrino sources? CLUSTERING REALTIME **ATMOSPHERIC** 10^{6} -Astrophysical BACKGROUND * Conventional Atm. O(10⁵) v yr⁻¹ 10^{5} Prompt Atm. umber of Events per Bin Muon-Template 10^{4} Sum Exp. Data 10^{3} **ASTROPHYSICAL** 10^{2} **NEUTRINOS** O(10) v yr⁻¹ 10^{1} Muon neutrino **ASTROPHYSICAL** 10^{0} -**NEUTRINOS 9.5yr** of O(100) v yr⁻¹ 10^{-1} 10^{5} 10^{7} 10^{2} 10^{3} 10^{6} 10^{4} Muon Energy Proxy / GeV [Icecube 2022 ApJ 928 50]

events using IceCube data

Realtime searches

- Single high-energy muon track events with high probability of being astrophysical $(E \gtrsim 100 \text{ TeV})$
- Since 2016, alerts are distributed through GCN network to ground and space-based observatories for rapid follow-ups
- Average alerts rate of ~2/month
- Median latency ~30 sec

Goal: find electromagnetic counterpart

Follow-up of astrophysical neutrino events

Clustering searches

SINGLE SOURCE SEARCH / **CATALOGUE SEARCH**

location in sky

Search N sources individually \Rightarrow Identify hotspots in the neutrino sky

Federica Bradascio

STACKING SEARCH

Search for combined signal from N sources from catalogues \Rightarrow Each source is weighted

Status of neutrino astronomy Extragalactic origin favoured by quasi-isotropic distribution

Most energetic neutrino events HESE 6yr (magenta) & $\nu_{\mu} + \bar{\nu}_{\mu}$ 8yr (red)

Federica Bradascio

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

No significant steady or transient emission from known Galactic or extragalactic high-energy sources, but several interesting candidates (e.g. AGN)

TXS 0506+056: realtime MM coincidence

IC-170922A observed in coincidence with flaring gamma-ray blazar

Chance correlation can be rejected at the 3σ -level

Federica Bradascio

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

[IceCube, PoS (ICRC2019) 1021; Science 361(2018)6398]

Fermi-LAT blazar stacking

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

Federica Bradascio

Combined contribution of 862 *Fermi-LAT* balzars (2LAC) below **27%** of the isotropic TeV-PeV neutrino flux

Neutrinos from hidden sources?

v flux compared to low y-ray diffuse flux point to y-ray dark sources

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

Federica Bradascio

IceCube 10 years (2011-2020) neutrino map Northern-sky point source cluster search (6.7 x 10⁵ events)

IceCube 10 years (2011-2020) neutrino map Northern-sky point source cluster search (6.7 x 10⁵ events)

IceCube 10 years (2011-2020) neutrino map

Northern-sky point source cluster search (6.7 x 10⁵ events)

After correcting for the look-elsewhere effect, global significance is 2.0 σ

Federica Bradascio

AGN corona model

Measured neutrino flux exceeds TeV gamma-ray upper limits

Neutrinos produced in gamma-ray obscured environment

Federica Bradascio

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

[IceCube, Science 378, 538-543 (2022)]

Why searching neutrinos from AGN cores?

Astrophysical neutrinos discovered

First source TXS 0506+056 identified

y-ray blazars responsible for a small fraction of v

Neutrinos produced in γ -ray opaque sources

Second source NGC 1068 identified **Production of** v in AGN corona

Neutrinos from AGN cores [IceCube, PRD 106 (2022) 2]

Neutrinos from Cores of Luminous AGN AGN with Shakura-Sunyaev accretion disk

Neutrino luminosity approximated by X-ray luminosity [Stecker et al. (2013), Kalashev et al. (2014)]

Neutrinos from Cores of Low-Luminosity AGN AGN with Radiative Inefficient Accretion Flows (RIAFs)

Neutrino luminosity approximated by X-ray luminosity [Kimura et al. (2015)]

Which AGN?

Luminous AGN

Radio Galaxies

Low-Luminosity AGN (LLAGN)

Seyfert Galaxies

How to select AGN? Using various bands of the electromagnetic spectrum

JET

Radio

Unaffected by obscuration and thus unbiased wrt orientation

X-ray

Excellent probe of accretion in AGN

Federica Bradascio

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

Infrared

Produced in the dust surrounding the accretion disk

ACCRETION DISK

Credit: NASA/JPL-Caltech

3LAC *Fermi*-LAT blazars are removed in all samples

Federica Bradascio

AGN final samples

Radio-selected AGN

Federica Bradascio

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

13,972 sources

52,835 sources

25,648 sources

AGN final samples

Radio-selected AGN

IR-selected AGN

_LAGN

-30°

Federica Bradascio

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

13,972 sources **9,749 sources**

52,835 sources 32,249 sources

25,648 sources 15,887 sources

Northern-Tracks dataset Upgoing through-going muons travelled through the Earth

How many neutrinos from each AGN?

Padovani et al. 2017

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

X-ray flux as neutrino flux proxy

How to search for correlation?

Nr. neutrino events

Unbinned likelihood

Signal PDF assumes each source is point-like and follows a power law spectrum:

$$\frac{dN}{dE} \propto E^{-\gamma}$$

Federica Bradascio

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

Stacking Analysis: test the combined emission of all sources to identify neutrinos from a population

> Nr. signal events $\mathscr{L}(n_s, \gamma) = \sum_{i}^{N} \left[\frac{n_s}{N} S(x_i, \gamma) + \left(1 - \frac{n_s}{N} \right) B(x_i) \right]$ Signal PDF **Background PDF**

> > Signal PDF of all *M* AGN sources stacked together, weighted by ω_k :

$$S(x_i, \gamma) = \sum_{k=1}^{M_{AGN}} \omega_k S_k(x_i, \gamma)$$

Results: n_s and γ

Test Statistic $\lambda = -2\log \left| \frac{\mathscr{L}(n_s = 0)}{\mathscr{L}(\hat{n}_s, \hat{\gamma})} \right|$ Nr. signal events = strength of the signal Spectral index of the signal E-γ Neutrino flux $\Phi_{100 \text{ TeV}}$ spectrum

Federica Bradascio

Results: p-values Probability that results are due to background alone

Federica Bradascio

Results: trial correction

"Look elsewhere" effect: have our results arisen by chance?

Neutrino spectrum

LUMINOUS AGN SAMPLES

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

LOW-LUMINOSITY AGN SAMPLE

From AGN samples to AGN population Through the *completeness* factor

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

Neutrino spectrum for AGN population

LUMINOUS AGN

Federica Bradascio

Search for high-energy neutrinos from Active Galactic Nuclei with IceCube

LOW-LUMINOSITY AGN

Cores of Luminous AGN can explain 27% – 100% of diffuse neutrino flux @100 TeV Cores of LLAGN can explain <100% of the diffuse neutrino flux @100 TeV

Summary

- IceCube has been investigating a diffuse flux of astrophysical neutrinos > TeV for almost a decade
- Exiting results related to **Active Galactic Nuclei**:
 - Evidence for neutrinos from flaring blazar TXS 0506+056 (3 σ)
 - Evidence for neutrinos from nearby Seyfert galaxy NGC 1068 (4.3o)
 - Hint at cores of X-ray selected AGN as sources of IceCube neutrinos at energies > TeV (2.6σ)

