4 sujets IRFU/DEDIP

Dernière mise à jour :


• Nuclear physics

• Particle physics

 

Caliste-3D CZT: development of a miniature, monolithic and hybrid gamma-ray imaging spectrometer with improved efficiency in the 100 keV to 1 MeV range and optimised for detection of the Compton effect and sub-pixel localisation

SL-DRF-24-0838

Location :

Département d’Electronique, des Détecteurs et d’Informatique pour la physique (DEDIP)

LAboratoire des SYstèmes de Détection

Saclay

Contact :

Rémy Le Breton

Aline Meuris

Starting date : 01-09-2024

Contact :

Rémy Le Breton
CEA - DRF/IRFU


Thesis supervisor :

Aline Meuris
CEA - DRF/IRFU/DAP/LSAS

01 69 08 12 73

Multi-wavelength observation of astrophysical sources is the key to a global understanding of the physical processes involved. Due to instrumental constraints, the spectral band from 0.1 to 1 MeV is the one that suffers most from insufficient detection sensitivity in existing observatories. This band allows us to observe the deepest and most distant active galactic nuclei, to better understand the formation and evolution of galaxies on cosmological scales. It reveals the processes of nucleosynthesis of the heavy elements in our Universe and the origin of the cosmic rays that are omnipresent in the Universe. The intrinsic difficulty of detection in this spectral range lies in the absorption of these very energetic photons after multiple interactions in the material. This requires good detection efficiency, but also good localisation of all the interactions in order to deduce the direction and energy of the incident photon. These detection challenges are the same for other applications with a strong societal and environmental impact, such as the dismantling of nuclear facilities, air quality monitoring and radiotherapy dosimetry.

The aim of this instrumentation thesis is to develop a versatile '3D' detector that can be used in the fields of astrophysics and nuclear physics, with improved detection efficiency in the 100 keV to 1 MeV range and Compton events, as well as the possibility of locating interactions in the detector at better than pixel size.

Several groups around the world, including our own, have developed hard X-ray imaging spectrometers based on high-density pixelated semiconductors for astrophysics (CZT for NuSTAR, CdTe for Solar Orbiter and Hitomi), for synchrotron (Hexitec UK, RAL) or for industrial applications (Timepix, ADVACAM). However, their energy range remains limited to around 200 keV (except for Timepix) due to the thinness of the crystals and their intrinsic operating limitations. To extend the energy range beyond MeV, thicker crystals with good charge carrier transport properties are needed. This is currently possible with CZT, but several challenges need to be overcome.

The first challenge was the ability of manufacturers to produce thick homogeneous CZT crystals. Advances in this field over the last 20 years mean that we can now foresee detectors up to at least 10 mm thick (Redlen, Kromek).

The main remaining technical challenge is the precise estimation of the charge generated by the interaction of a photon in the semiconductor. In a pixelated detector where only the X and Y coordinates of the interaction are recorded, increasing the thickness of the crystal degrades spectral performance. Obtaining Z interaction depth information in a monolithic crystal theoretically makes it possible overcome the associated challenge. This requires the deployment of experimental methods, physical simulations, the design of readout microelectronics circuits and original data analysis methods. In addition, the ability to localise interactions in the detector to better than the size of a pixel will help to solve this challenge.
DESIGN OF A MONOLITHIC PIXEL SENSOR FOR PARTICLE PHYSICS WITH AN EMBEDDED ADAPTIVE READOUT ELECTRONICS

SL-DRF-24-0349

Research field : Nuclear physics
Location :

Département d’Electronique, des Détecteurs et d’Informatique pour la physique (DEDIP)

Systèmes Temps Réel, Electronique d’Acquisition et Microélectronique

Saclay

Contact :

Fabrice Guilloux

Stefano PANEBIANCO

Starting date : 01-10-2024

Contact :

Fabrice Guilloux
CEA - DRF/IRFU/DEDIP/STREAM

33 1 69 08 67 31

Thesis supervisor :

Stefano PANEBIANCO
CEA - DRF/IRFU/DPhN/LQGP

0169087357

In current and future high-energy physics experiments (i.e. upgrades of large detectors at the LHC and experiments in future colliders), the granularity of particle detectors continues to increase, and the use of multi-channel submicron integrated circuits has become a standard.

This granularity was taken one step further in the field of "Monolithic Active Pixel Sensor" (MAPS) technology, where pixel sizes can be as small as 10 x 10 µm2. These small pixels make it possible to achieve record spatial resolutions or greatly improve the radiation resistance of the trace detector, at the cost of a large quantity of data produced. This large amount of data is acceptable where a maximum spatial resolution is required, but can be prohibitive when this is not necessary, or when space and consumption constraints put limits on the number of fast downstream links.

Each experiment therefore requires to redefine the combination of the pixel size and the architecture of the detector's readout electronics, in order to meet the occupancy rate requirements of each physics experiment, and the detector's readout capabilities.
A major innovation in the design of pixel sensors for particle physics is to decouple the pixel matrix from the data rate sent.
As part of a team that has been developing MAPS since 1999, the approach required for the thesis is in a first step to study the existing trace detector architecture in order to understand its limitations in terms of radiation resistance. In a second step, the thesis will focus on information grouping options, assessing the impact of these options on data reduction as well as on induced information loss.

This will be supported by the design of a system-on-chip architecture, including pixel array optimization and digital processing, validating the work carried out in an integrated circuit.

To this end, this thesis will focus specifically on one of the major experiments at the European Center for Nuclear Research (CERN): the Upstream Tracker detector for the LHC Beauty Quark Experiment (LHCb).
Imaging with Micromegas detectors with Optical readout

SL-DRF-24-0102

Research field : Nuclear physics
Location :

Département d’Electronique, des Détecteurs et d’Informatique pour la physique (DEDIP)

DÉtecteurs: PHYsique et Simulation

Saclay

Contact :

Thomas PAPAEVANGELOU

Esther FERRER RIBAS

Starting date : 01-10-2024

Contact :

Thomas PAPAEVANGELOU
CEA - DRF/IRFU/DEDIP/DEPHYS

01 69 08 2648

Thesis supervisor :

Esther FERRER RIBAS
CEA - DRF/IRFU/DEDIP/DEPHYS

0169083852

Personal web page : https://irfu.cea.fr/Pisp/esther.ferrer-ribas/

Laboratory link : https://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast_sstheme.php?id_ast=4218

Recent developments have shown that coupling a Micromegas gaseous detector on a glass substrate with a transparent anode and a CCD camera enable the optical readout of Micromegas detectors with an impressive spatial resolution showing that the glass Micromegas detector is well-suited for imaging. This feasibility test has been effectuated with low-X-ray photons permitting energy resolved imaging. This test opens the way to different applications. Here we will focus, on one hand, on neutron imaging for non-destructive examination of highly gamma-ray emitting objects, such as fresh irradiated nuclear fuel or radioactive waste and on the other hand, we would like to develop a beta imager at the cell level in the field of anticancerous drug studies.
Both applications require gas simulations to optimize light yields, optimization of the camera operation mode and design of the detectors in view of the specific constraints of reactor dismantling and medical applications: spatial resolution and strong gamma suppression for neutron imaging and precise rate and energy spectrum measurements for the beta. The image acquisition will be optimized for each case and dedicated processing algorithms will be developed.
Towards a high spatial resolution pixel detector for particle identification: new detectors contribution to physics

SL-DRF-24-0706

Research field : Particle physics
Location :

Département d’Electronique, des Détecteurs et d’Informatique pour la physique (DEDIP)

DÉtecteurs: PHYsique et Simulation

Saclay

Contact :

Nicolas FOURCHES

Starting date : 01-09-2024

Contact :

Nicolas FOURCHES
CEA - DRF/IRFU

0169086164

Thesis supervisor :

Nicolas FOURCHES
CEA - DRF/IRFU

0169086164

More : https://doi.org/10.1109/TED.2017.2670681

Future experiments on linear colliders (e+e-) with low hadronic background require improvements in the spatial resolution of pixel vertex detectors to the micron range, in order to determine precisely the primary and secondary vertices for particles with a high transverse momentum. This kind of detector is set closest to the interaction point. This will provide the opportunity to make precision lifetime measurements of short-lived charged particles. We need to develop pixels arrays with a pixel dimension below the micron squared. The proposed technologies (DOTPIX: Quantum Dot Pixels) should give a significant advance in particle tracking and vertexing. Although the principle of these new devices has been already been studied in IRFU (see reference), this doctoral work should focus on the study of real devices which should then be fabricated using nanotechnologies in collaboration with other Institutes. This should require the use of simulation codes and the fabrication of test structures. Applications outside basics physics are X ray imaging and optimum resolution sensors for visible light holographic cameras.

 

Retour en haut