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Why should we care about multiD instabilities

- successfulexplosion driven by neutrino energy
(Marek & Janka 09, Suwa+10, Müller+12, Bruenn+13, Melson+15)

- pulsar kick 
(Scheck+04, 06, Nordhaus+10, +11, 

Wongwathanarat+10, +13)

- pulsar spin 
(Blondin & Mezzacappa 07, Yamasaki & Foglizzo 08, Iwakami+09, Kazeroni+16)

- H/He mixing and Ni clumps in SN1987A 
(Kifonidis+06, Hammer+09, Utrobin+15)

- gravitational waves
(Ott+06, Kotake+07, Marek+09, Murphy+09, Kotake+11, Müller+13, Kuroda+16)

- neutrino signature
(Marek+09, Müller+12, Lund+10, 12, Tamborra+13, Müller & Janka 14)



Hanke+13, Melson+15
core-collapse of a 27Msol star in 3D

at the explosion threshold

PRACE project 150 million hours
16.000 processors, 4.5 months/model

time evolution: 
500ms 
diameter: 300km 



The many degrees of approximation of multiD core collapse

- explosion energy, neutrino signal, 
grav. waves, nucleosynthesis, 

- pulsar kick and spin

Complex comprehensive
simulations 

SWASI experiment
Build intuition 
Fast exploration the parameter space:

flow rate, Mach number,
shock radius, angular momentm

Predictions
of SN and pulsars 

properties

progenitor structure + nuclear EOS 
+ neutrino "transport" & interactions
+ "GR" + multi-D hydro

Multi-D hydro
3D stationary accretion,
neutrino heating, 
SASI+convection

- 2D shallow water 
with viscous drag,   
then inviscid

© MPA/Janka

- 2D cylindrical SASI
ideal gas
neutrino cooling

© Blondin & Mezzacappa

© Hosseini Kazeroni

© Masset, Gonzalez

© Grefenstette



How to characterize an instability

A linear instability is characterized by an exponential increase of small perturbation, with a rate 
independent of its amplitude in the linear regime.

The simplest example is the rigid pendulum:

angular momentum and torques

linearized equation

initial perturbation δθ0 , (dδθ/dt)0

solution

growth rate

Similarly, fluid instabilities develop on a stationary flow when the restoring forces result in an 
exponential amplification of the initial perturbation: e.g. a flapping flag, convective clouds...
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Perturbative analysis

Example: perturbation of a uniform ideal gas with uniform velocity v0 along the x direction

Linearizing = keeping the first order terms

Since the unperturbed flow is stationary, a Fourier transform in time simplifies the time derivatives 
into multiplications by -iωàthe solution is thus a combination of exponential functions exp(-iωt) 

If the stationary flow is uniform, a Fourier transform in space simplifies the differential system into an 
algebraic system: exp(ikxx+ikyy)

The relation between the eigenfrqequency ωand the wavenumber k of the perturbation is the 
dispersion relation.
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if then and                   : entropy perturbations are incompressible

If δS=0,  then                       and

If the velocity perturbation δv is parallel to the wave vector k: 
acoustic perturbations are irrotational (kxδv=0). Their dispersion relation is

Conversely, if δS=0 and the perturbation is incompressible and corresponds to a vorticity 
perturbation advected with the flow.

In summary, three types of perturbations exist in a ideal uniform gas:
-entropy perturbations 

incompressible and advected with the flow, 
-vorticity perturbations

-acoustic waves irrotational and adiabatic, 

Warning: non-uniform regions of the flow are regions of linear coupling between these 3 types of "waves"
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Some examples of fluid instabilities

Gravitational potential:
Rayleigh-Taylor instability: feeds on potential energy, by carrying 
down dense matter  exchanged with lighter matter 

Sheared flow:
Kelvin-Helmholtz instability: feeds on sheared velocities, tends to 
smoothen the velocity gradient

Rotating flow:
Corotation instability: feeds on differential rotation and exchange 
angular momentum through a spiral acoustic wave

Magnetorotational instability: feeds on sheared velocities in a MHD 
flow, exchanging angular momentum along the field lines connecting 
different radial positions

Shocked flow:
Ritchmeyer Meshkov instability: similar to RT with an impulsional 
acceleration due to the crossing of a density interface by a shock

Standing accretion shock instability: advective-acoustic interplay of 
the shock surface and a downstream region of gradients
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Instability of a top heavy disc

Denoting by I~MR2/2 the moment of inertia of a disc with radius R and mass M
a density distribution ρ(z) with a transition from ρdown to ρup over a lengthscale H=ρ/(dρ/dz)
zG is the height of the center of mass above the geometric center. 
The linearized variation of the angular momentum is ruled by the equation

If R>>H, the growth rate (or oscillation frequency) is thus

àAs for a pendulum, the smaller the disc, the shorter the time scale.

If R<<H, the density distribution is linearly approximated

the growth rate is:

àAs the radius of the disc decreases, the growth rate increases like ~(g/R)1/2

and reaches a maximum ~(g/H)1/2 as R approaches the scale H of the density gradient.
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Two incompressible fluids with uniform densities ρup>ρdown

Linearizing, + Fourier transform in time and space: exp(-iωt+ikxx+ikzz)

à à à

Boundary condition: continuity of the interface pressure P(ζ)+δP at z=ζ

Instability of a top heavy superposition of incompressible fluids
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A solid mechanics analogue of the RT instability is a disc of radius R with a top heavy mass distribution 
from ρ to ρ+Δρ and a transition zone extended over a distance H from the rotation axis

if H/R<<1

if H/R>>1

The incompressible version of the RT instability is the instability of a dense fluid over a light fluid, noting 
k the horizontal wavelength and H the lengthscale of the density transition from ρ to ρ+Δρ

if kH<<1,

if kH>>1

In a gas in pressure equilibrium in a gravitational field, the vertical displacement of a blob of gas leads to 
an adiabatic change of its density to adapt to the local pressure. 
The density of the blob carried upward is lighter 
than the surrounding gas if the entropy decreases upward:

if kH>>1

The Brunt Väisälä frequency ωBV is the frequency of perturbations with a short horizontal wavelength 
compared to the stratification scale height.

The Rayleigh Taylor instability from solid to fluid mechanics
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The oscillations driven by the buoyancy force are called internal gravity waves.

The vertical gradients of electron fraction participate in the same manner to the stability criterion. 

The generalized Brunt Väisälä frequency is: 

The possibility to enhance the neutrino luminosity of the proto-neutron star through lepton-driven 
convective instability has been proposed by Epstein (1979)

3 locations where transverse motions can feed on potential energy:

-the negative entropy gradient left by the deceleration 
of the shock until it stalls at 150km: "prompt convection"

-the gradient of electronic pressure inside the proto-neutron star
"thermolepton convection" 

-"neutrino-driven convection" in the gain region 

The Rayleigh Taylor instability in core collapse supernovae
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The Rayleigh Taylor instability in core collapse supernovae

The proto-neutron star convection is embedded 
in a stably stratified region. 
It has a moderate impact on the neutrino 
luminosity, at a 10-20% level  (Dessart+06, 
Buras+06, Müller & Janka 14)

However, it may contribute to the amplification 
of magnetic fields (Thompson & Duncan 93).

Scheck+08

Prompt convection is transient and does not 
affect the explosion threshold.

Dessart+06



The negative entropy gradient is fed by the 
absorption in the gain region of neutrinos 
diffusing out of the neutrinosphere.

Neutrino-driven convection in the gain region Foglizzo +06

hydrostatic equilibrium
(Chandrasekhar 61)

The size of the largest unstable convective cells is 
comparable to the size of the gain region



The local timescale of convection must be compared to 
the timescale of advection through the gain region 

Neutrino-driven convection in the gain region

horizontal wavenumber

Foglizzo +06

A planar toy model to study the RT 
instability below a stationary shock

Despite the negative entropy gradient, 
the flow is linearly stable if χ<χcrit~3
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The perturbative calculation requires to write 
-the upper boundary conditions on a perturbed shock including photodissociation, 
-the lower boundary condition of a outgoing acoustic wave.

Neutrino-driven convection in the gain region Foglizzo +06

the energy losses can be parametrized by 
the postshock Mach number 0.1<Msh<0.3

Stationary flow 
including non adiabtic 
heating and cooling



Perturbations of the stationary flow Foglizzo +06

-f is the perturbation of the energy density

-h is the perturbation of the mass flux

-entropy perturbtions δS are simply advected in an adiabatic flow

-the combination of entropy and vorticity δK is conserved in an adiabatic flow.  
The validity of is conservation law seems to be limited to the linear regime.



Perturbations of the stationary flow Foglizzo +06

the conservation of mass flux, momentum flux and energy flux are written across the 
shock whose poition is displaced by Δζ with a velocity Δv

If the flow is adiabatic, the quantity δK is uniformly zero:
-the perturbed shock geneates δKsh=0
-δK is conserved when advected

In this case, the vorticity is directly related to the 
perturbed entropy through
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the outgoing wave condition at the lower boundary requires the decomposition of the perturbation 
into four components: 

- advected entropy fS hS associated to δS (δK=0, δP=0)
- advected entropy/vorticity fK hK associated to δK (δS=0, δP=0)
- downward propagating acoustic waves f+ (δS=0, δK=0)
- upward propagating acoustic waves f- (δS=0, δK=0)

The outgoing acoustic condition at the lower boundary is simply f-=0 , h-=0

In a non uniform flow the identification of the acoustic waves relies on the WKB approximation. 

Perturbations of the stationary flow

horizontal wavenumber

Foglizzo +06



Using the WKB approximation to identify acoustic waves

In the adiabatic approximation, the differential system can be reduced to a single differential 
equation of second order. A change of variable allows for a compact formulation:

If the frequency is high enough, the acoustic wave adapts adiabatically to the radial gradients of 
the flow according to the WKB approximation of the homogeneous differential equation

The WKB criterion specifies the domain of validity of this approximation
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The WKB approximation is a useful tool to approximate the solution of a 2nd order differential equations, 
written in the canonical form

If W(X) were constant, the solution would be a simple combination of two exponential 

The WKB approximation of the solution accounts for the variations of W(X)

The domain of validity of this approximation is set by the WKB condition 

It requires a slow enough spatial variation of the wavevector compared to the wavelength

This approximation is significantly more elaborate than a ray tracing approximation.
The factor W-1/4 garantees that the energy of the approximate wave is correctly propagated.

The domain where the WKB criterion is not fulfilled correspond to regions of coupling between waves.

For example, the turning point x=0 in the Airy function solution of y''+xy=0
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2nd order linear differential equation with a source term S(X)

Let f1, f2 two independent solutions of the homogeneous equation.

The Wronskien associated to (f1,f2) is defined as

it satisfies

The general solution is

One can easily check its first derivative: 

and its second derivative:

The boundary of the integral are defined by the boundary conditions of the differential system.

reminder about the general solution to a second order differential 
equation with a source term

⇢
@2

@X2
+ a(X)

@

@X
+ b(X)

�
f(X) = S(X)

f(X) = f1

Z X f2S

W dX 0 � f2

Z X f1S

W dX 0

W ⌘ f2
@f1
@X

� f1
@f2
@X

@f

@X
=

@f1
@X

Z X f2S

W dX 0 � @f2
@X

Z X f1S

W dX 0

@2f

@X2
=

@2f1
@X2

Z X f2S

W dX 0 � @2f2
@X2

Z X f1S

W dX 0 + S

1

W
@W
@X

= �a



Convection vs advection in 2D
Test case: a planar subsonic toy model without a shock    χcrit=2
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= 30%

Convection vs advection in 2D/3D
Kazeroni +17

Density perturbations with a very large 
amplitude are buoyant but ultimately 
washed away if χ<χcrit

Self sustained convective motions last 
longer if χ is close to the linear stability 
threshold χcrit

Their evacuation is faster in 2D than in 3D 

� ⌘
Z

shock

gain

!
BV

dr

vr
⇠ ⌧

adv

⌧
buoy

� = 1.5 < �crit = 2



Convection vs advection in 2D/3D
Kazeroni +17
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Density perturbations with a small 
amplitude are linearly unstable if χ>χcrit

The linear phase of the instability 
is identical in 2D and 3D

Their non linear saturation 
is stronger in 3D than in 2D
despite the stronger mixing in 3D

àfavourable to 3D explosions

� = 5 > �crit = 2


