Actualités 2024

11 janvier 2024
Un des 4 instruments du JWST et le seul fonctionnant dans l'infrarouge moyen, MIRI fourni des images spectaculaires et des données redéfinissant notre compréhension du cosmos

La Royal Astronomical Society a annoncé aujourd'hui que leur prestigieux Group Achievement Award a été décerné à l'équipe internationale qui a développé l'instrument Mid InfraRed (MIRI) pour le télescope spatial James Webb (JWST). Ce prix récompense l'impressionnante réussite de l'équipe, qui a su mener à bien un projet international aussi long et complexe, ainsi que permettre des résultats scientifiques impressionnants émergeant de MIRI. 

MIRI est le fruit d’une collaboration entre l’Europe et les Etats-Unis d’Amérique (figure 2). L’équipe qui a conçu et développé l’instrument MIRI du JWST, a été dirigé par Gillian Wright du Royal Observatory of Edimburgh (ROE) et de George Rieke de l’Université d’Arizona. MIRI, seul instrument du télescope spatial à travailler dans l’infrarouge moyen, entre 5 et 28 microns, est formé d’un spectrographe, MRS (MIRI medium-resolution spectrometer), et d’un imageur, MIRIm (figure 1). Sous l'égide du CNES, le département d'astrophysique du CEA-Irfu, fort d'une expertise étendue dans le domaine de l'infrarouge moyen depuis les années 1980, a assuré la maîtrise d’œuvre de MIRIm. 

24 avril 2024
un événement transitoire unique détecté avec INTEGRAL

Le premier magnetar extragalactique découvert par INTEGRAL! Un événement transitoire unique a été détecté par le satellite INTEGRAL: jusqu’à présent le magnetars, étoiles à neutrons au champ magnétique hyper puissant, n’étaient connus que dans notre galaxie. INTEGRAL, avec l’aide de XMM et d’observatoires au sol, a découvert un magnetar dans la galaxie M82!

Retour sur la détection de ce "giant flare" seulement le 4ème en 50 ans d’observations! (article publié Nature)

Pendant que le satellite de l’ESA INTEGRAL était en train d’observer la région de l’amas de galaxies de la Vierge en Novembre 2023, le télescope IBIS/ISGRI a soudainement détecté un signal gamma très bref, d’une durée d’un dixième de seconde (fugure ci contre). Grâce au INTEGRAL Burst Alert Sytem (IBAS), qui analyse les données d’ISGRI en temps réel au centre de données d’INTEGRAL (ISDC), une alerte a été émise seulement 13 secondes après l’évènement et les astronomes d’astreinte, dont Diego Götz du DAp, ont rapidement réalisé que cet évènement énergétique était associé à la galaxie M82.

La question qui s’est posée par la suite était : quel est la nature de l’objet à l’origine de l’impulsion gamma. Est-ce un sursaut gamma court (issu de la coalescence de deux étoiles à neutrons) ou bien un giant flare d’un magnetar (étoile à neutrons avec un champ magnétique très élevé) ?

28 mars 2024

Les magnétars sont des étoiles à neutrons arborant les champs magnétiques les plus intenses observés dans l’Univers. Pour s’atteler à la question encore ouverte de l’origine de ces champs magnétiques extrêmes, un scénario a été proposé par une équipe du Département d’Astrophysique (DAp) du CEA Saclay faisant appel au mécanisme dynamo de Tayler-Spruit, provoqué par la matière qui retombe sur la jeune étoile à neutrons après l’explosion en supernovae. L’équipe de scientifiques avait montré en 2022 par une analyse analytique que ce type de dynamo pouvait expliquer l’intensité du champ magnétique des magnétars. Dans cette nouvelle étude, l’équipe confirme ce résultat grâce à des simulations numériques tridimensionnelles. Cela aura de grandes répercussions sur la compréhension de l’origine des champs magnétiques, non seulement pour les magnétars, mais aussi pour l’évolution stellaire où le même mécanisme dynamo pourrait être à l’œuvre.

Cette nouvelle étude a été publié dans le journal Monthly Notices of the Royal Astronomical Society: Letters.

28 février 2024

L’univers énergétique d’XMM-Newton s’associe à la vision du ciel du satellite Euclid. Mille heures d’observations en rayons X, sur une région grande comme 40 fois la lune, viendront compléter les études multi-longueur d’onde sur l’évolution cosmique des amas de galaxies. Une association déterminante pour contraindre les scénarios cosmologiques et révéler la nature de l’énergie sombre.

11 janvier 2024
Un des 4 instruments du JWST et le seul fonctionnant dans l'infrarouge moyen, MIRI fourni des images spectaculaires et des données redéfinissant notre compréhension du cosmos

La Royal Astronomical Society a annoncé aujourd'hui que leur prestigieux Group Achievement Award a été décerné à l'équipe internationale qui a développé l'instrument Mid InfraRed (MIRI) pour le télescope spatial James Webb (JWST). Ce prix récompense l'impressionnante réussite de l'équipe, qui a su mener à bien un projet international aussi long et complexe, ainsi que permettre des résultats scientifiques impressionnants émergeant de MIRI. 

MIRI est le fruit d’une collaboration entre l’Europe et les Etats-Unis d’Amérique (figure 2). L’équipe qui a conçu et développé l’instrument MIRI du JWST, a été dirigé par Gillian Wright du Royal Observatory of Edimburgh (ROE) et de George Rieke de l’Université d’Arizona. MIRI, seul instrument du télescope spatial à travailler dans l’infrarouge moyen, entre 5 et 28 microns, est formé d’un spectrographe, MRS (MIRI medium-resolution spectrometer), et d’un imageur, MIRIm (figure 1). Sous l'égide du CNES, le département d'astrophysique du CEA-Irfu, fort d'une expertise étendue dans le domaine de l'infrarouge moyen depuis les années 1980, a assuré la maîtrise d’œuvre de MIRIm. 

27 mars 2024

Une équipe internationale, dont fait partie le Département d’Astrophysique du CEA-Saclay, dirigée par l'Instituto de Astrofísica e Ciências do Espaço (IA), a utilisé l'un des spectrographes les plus avancés au monde pour détecter les plus petits "tremblements stellaires" jamais enregistrés dans une étoile naine orange, ce qui en fait l'étoile la plus petite et la plus froide observée à ce jour avec des oscillations solaires confirmées. Cette étude démontre que l’astérosismologie est une technique puissante pour étudier de telles étoiles, ouvrant de nouvelles perspectives dans notre compréhension de la physique stellaire et, par la même occasion, des exoplanètes.

Cette étude fait l’objet d’une publication dans le journal Astronomy & Astrophysics Letters : “Expanding the frontiers of cool-dwarf asteroseismology with ESPRESSO: Detection of solar-like oscillations in the K5 dwarf ε Indi”.

18 janvier 2024

Le télescope spatial James Webb a réalisé un nouveau portrait de l'atmosphère de l'exoplanète WASP-39b, une "Saturne chaude" située à quelque 700 années-lumière. Après les premières observations en proche infrarouge en 2022, qui ont permis de révéler pour la première fois la présence de dioxyde de soufre (SO2) dans l'atmosphère d'une exoplanète, elle a été de nouveau observée en 2023, mais cette fois en infrarouge lointain, à l'aide du spectromètre MIRI. Cette nouvelle observation a permis à l'équipe de chercheurs internationale, comprenant le Département d'Astrophysique de Saclay, de confirmer la présence de cette molécule dans l'atmosphère de WASP-39b et de contraindre son abondance. Cette étude récente démontre que la photochimie façonne l'atmosphère de WASP-39b sur une large plage de longueurs d'onde.

Cette étude a été publiée dans la préstigieuse revue Nature

17 janvier 2024

Pour dévoiler ce mystère, plusieurs équipes aux compétences diversifiées du Département d’Astrophysique ont dû se réunir, car l’architecture qui unie l’étoile à sa planète est très complexe. Il fallait fusionner une compréhension fine de la physique stellaire et planétaire, en explorant leurs interactions, et avoir une connaissance approfondie des observations du satellite Kepler (NASA) pour en être capable d’en déchiffrer les données. 

L’étude démontre que la rareté observée semble découler non pas d'un biais observationnel, mais plutôt de causes physiques. Les effets de marée et le magnétisme suffisent à expliquer qualitativement et quantitativement la migration des planètes proches autour des étoiles à rotation rapide. De surcroît, cette migration semble être dépendante du type spectral (qui dépend fondamentalement de la masse) de l’étoile. Bien que ces résultats soient prometteurs, il est néanmoins nécessaire d’élargir la taille de l’échantillon pour mieux contraindre la pénurie et mieux comprendre les mécanismes en jeu. En particulier, cette étude souligne l’importance de considérer le type spectral des étoiles (leurs masses) si l’on veut correctement modéliser les interactions étoile-planète.

Ce travail fait l’objet d’une publication dans la revue Astronomy & Astrophysics.

11 janvier 2024
Un des 4 instruments du JWST et le seul fonctionnant dans l'infrarouge moyen, MIRI fourni des images spectaculaires et des données redéfinissant notre compréhension du cosmos

La Royal Astronomical Society a annoncé aujourd'hui que leur prestigieux Group Achievement Award a été décerné à l'équipe internationale qui a développé l'instrument Mid InfraRed (MIRI) pour le télescope spatial James Webb (JWST). Ce prix récompense l'impressionnante réussite de l'équipe, qui a su mener à bien un projet international aussi long et complexe, ainsi que permettre des résultats scientifiques impressionnants émergeant de MIRI. 

MIRI est le fruit d’une collaboration entre l’Europe et les Etats-Unis d’Amérique (figure 2). L’équipe qui a conçu et développé l’instrument MIRI du JWST, a été dirigé par Gillian Wright du Royal Observatory of Edimburgh (ROE) et de George Rieke de l’Université d’Arizona. MIRI, seul instrument du télescope spatial à travailler dans l’infrarouge moyen, entre 5 et 28 microns, est formé d’un spectrographe, MRS (MIRI medium-resolution spectrometer), et d’un imageur, MIRIm (figure 1). Sous l'égide du CNES, le département d'astrophysique du CEA-Irfu, fort d'une expertise étendue dans le domaine de l'infrarouge moyen depuis les années 1980, a assuré la maîtrise d’œuvre de MIRIm. 

11 janvier 2024
Un des 4 instruments du JWST et le seul fonctionnant dans l'infrarouge moyen, MIRI fourni des images spectaculaires et des données redéfinissant notre compréhension du cosmos

La Royal Astronomical Society a annoncé aujourd'hui que leur prestigieux Group Achievement Award a été décerné à l'équipe internationale qui a développé l'instrument Mid InfraRed (MIRI) pour le télescope spatial James Webb (JWST). Ce prix récompense l'impressionnante réussite de l'équipe, qui a su mener à bien un projet international aussi long et complexe, ainsi que permettre des résultats scientifiques impressionnants émergeant de MIRI. 

MIRI est le fruit d’une collaboration entre l’Europe et les Etats-Unis d’Amérique (figure 2). L’équipe qui a conçu et développé l’instrument MIRI du JWST, a été dirigé par Gillian Wright du Royal Observatory of Edimburgh (ROE) et de George Rieke de l’Université d’Arizona. MIRI, seul instrument du télescope spatial à travailler dans l’infrarouge moyen, entre 5 et 28 microns, est formé d’un spectrographe, MRS (MIRI medium-resolution spectrometer), et d’un imageur, MIRIm (figure 1). Sous l'égide du CNES, le département d'astrophysique du CEA-Irfu, fort d'une expertise étendue dans le domaine de l'infrarouge moyen depuis les années 1980, a assuré la maîtrise d’œuvre de MIRIm. 

 

Retour en haut