1 sujet /DEDIP/DEPHYS

Dernière mise à jour :


 

Imagerie avec des détecteurs Micromegas à lecture optique

SL-DRF-24-0102

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Département d’Electronique, des Détecteurs et d’Informatique pour la physique (DEDIP)

DÉtecteurs: PHYsique et Simulation (DEPHYS)

Saclay

Contact :

Thomas PAPAEVANGELOU

Esther FERRER RIBAS

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Thomas PAPAEVANGELOU
CEA - DRF/IRFU/DEDIP/DEPHYS

01 69 08 2648

Directeur de thèse :

Esther FERRER RIBAS
CEA - DRF/IRFU/DEDIP/DEPHYS

0169083852

Page perso : https://irfu.cea.fr/Pisp/esther.ferrer-ribas/

Labo : https://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast_sstheme.php?id_ast=4218

Des développements récents ont montré que le couplage d'un détecteur gazeux Micromegas sur un substrat en verre avec une anode transparente et une caméra CCD permet la lecture optique des détecteurs Micromegas avec une résolution spatiale impressionnante. Ce test montre que le détecteur Micromegas en verre est bien adapté à l'imagerie. Des tests ont été réalisé avec des photons de rayons X faibles permettant une imagerie résolue en énergie ouvrant la voie à différentes applications. Nous nous concentrerons ici, d'une part, sur l'imagerie neutronique pour l'examen non destructif d'objets fortement émetteurs de rayons gamma, tels que le combustible nucléaire fraîchement irradié ou les déchets radioactifs et, d'autre part, nous aimerions développer un imageur bêta au niveau cellulaire dans le domaine de l'étude des médicaments anticancéreux.
Ces deux applications nécessitent des simulations pour optimiser les rendements lumineux, l'optimisation du mode de fonctionnement de la caméra et la conception des détecteurs compte tenu des contraintes spécifiques du démantèlement des réacteurs et des applications médicales : résolution spatiale et forte suppression des rayons gamma pour l'imagerie neutronique et mesures précises du taux et du spectre d'énergie pour le bêta. L'acquisition des images sera optimisée pour chaque cas et des algorithmes de traitement dédiés seront développés.

• Physique nucléaire

 

Retour en haut