L’électroaimant supraconducteur quadripôle de grande ouverture (90 mm) pour le projet HL-LHC du Cern qui a été fabriqué et testé à 4,2 K par les équipes de l’Irfu, a atteint le 5 mars 2021 son gradient nominal de 120 T/m (défini pour 1,9 K). Ces très bons résultats viennent valider la conception et les procédures de fabrication proposées par l’Irfu qui font l’objet d’un transfert technologique vers les industriels membres du projet Européen QuaCo (QUAdrupoleCOrrector). Cet aimant a été réalisé dans le cadre du projet d’upgrade en luminosité progressive du LHC (HL-LHC) mis en place à de l’horizon 2025. Ces aimants en NbTi font partie des aimants d’insertion. Ils doivent être placés en amont et en aval des détecteurs comme Atlas et CMS au centre desquels les 2 faisceaux se croisent pour faire les collisions. Ils permettront d’assurer la compression des faisceaux avant les collisions et ainsi de contribuer à augmenter la luminosité intégrée du HL-LHC (c’est-à-dire le nombre total de collisions), jusqu’à la rendre dix fois supérieure à la valeur nominale initiale du LHC.

 

L'objectif principal de l'expérience KATRIN est la mesure de la masse des trois neutrinos du modèle standard de la physique des particules. Mais l'analyse du spectre de décroissance bêta du tritium permet également de rechercher la trace d'un hypothétique quatrième neutrino, appelé neutrino stérile. La collaboration vient de soumettre pour publication la première analyse (voir article) à partir de quatre semaines de données acquises en 2019. Pas de trace de ce quatrième neutrino, mais ce n'est qu'un début car la sensibilité va rapidement s'améliorer. Le spectromètre KATRIN démontre un fort potentiel pour étudier cette possible nouvelle facette du neutrino.

La cosmologie moderne a maintenant bien établi l'existence de la matière noire. Mais la nature de celle-ci est encore une complète énigme. A l’opposé de ces échelles d’observation de l’infiniment grand, le monde de l’infiniment petit est très bien expliqué par le modèle standard de la physique des particules mais ne propose pas non plus de candidat particule pour cette matière noire. Pierre Brun, physicien des particules à l’Irfu, vient de recevoir une bourse européenne d'excellence ERC pour diriger son projet G-LEAD, GigaHertz Laboratory Experiment for Axion Dark Matter.

Elle vise à construire une expérience originale pour tester un candidat matière noire sous forme d’axions. Ces derniers ont été postulés à la fin des années 70 pour corriger une anomalie liée à un défaut sur une symétrie fondamentale appelée CP (pour la conjugaison de 2 symétries de Charge et de Parité) dans les interactions fortes. Il se trouve que l'axion a toutes les caractéristiques pour être une particule de matière noire : il est neutre, massif et interagit très faiblement avec la matière, si peu que, pour l'instant, il n'a jamais été observé. 

Exiger que l'axion, qui corrige l'anomalie de l'interaction forte, soit aussi la matière noire dans laquelle nous baignons, conduit à la prédiction d’une gamme de masse assez stricte mais pour autant une large bande par rapport aux expériences en cours sur la recherche d’axions. G-LEAD est une expérience exploratoire d’une gamme de masse allant de 10 et 1000 μeV.

Dotés d’une très faible masse les neutrinos jouent un rôle clé en en physique des particules et en cosmologie. La contrainte sur leur masse vient tout juste d’être améliorée par l'expérience KATRIN. La première campagne scientifique de 4 semaines de prise de données, au printemps 2019, contraint désormais la masse des neutrinos à moins de 1.1 électron-volt. Il s’agit de la meilleure mesure indépendante de tous modèles, apportant une amélioration d'un facteur 2 par rapport aux résultats expérimentaux antérieurs. La contrainte est encore inférieure à celle venant des mesures cosmologiques sur la masse totale de 3 saveurs de neutrinos, qui flirte avec la centaine de milli eV (meV).   Mais KATRIN va continuer à prendre plus de données durant les 5 prochaines années et devrait atteindre une sensibilité sur la masse du neutrino électronique voisine de 200 meV. Le haut potentiel de cette expérience réside dans sa précision et dans le fait que cette mesure est, elle, indépendante de tout modèle théorique contrairement aux mesures issues des observations cosmologiques. En effet elle repose sur la conservation de l’énergie et la mesure d’une expérience bien connue, la désintégration beta.

Début août 2017, le dipôle FRESCA2, conçu et réalisé en collaboration entre l’Irfu et le CERN, a atteint le champ de 13,3 T au centre de l’ouverture de 100 mm lors des tests effectués dans la station d’essai HFM au CERN. C’est un nouveau record mondial, avec une énergie stockée de 3 MJ/m et des forces mécaniques jamais atteintes dans ce type d’aimant. Cet électroaimant a été étudié pour donner une homogénéité de champ magnétique de l’ordre du pourcent sur une longueur de 540 mm.

Lors d’un premier refroidissement à 1,9 K, l’aimant dipôle FRESCA2b a atteint un champ de 13,04 T à 10,6 kA après deux quenchs [1] et ce champ a été maintenu dans l’aimant pendant une heure. Si seulement deux essais ont pu être réalisés à 4,5 K, compte-tenu du temps disponible, ils ont montré deux quenchs à des valeurs très proches du champ nominal (12,98 T). Après un cycle thermique (remontée à la température de 280 K et deuxième refroidissement à 1,9 K), l’aimant a atteint le champ de 13,3 T à 10,85 kA sans quench additionnel. Cette valeur correspond à 71 % de la valeur maximale atteignable sur la ligne de charge de l’aimant. A 13 T, l’aimant a montré un fonctionnement stable pendant quatre heures. La station de test est à présent en maintenance, et les tests devraient reprendre en octobre pour explorer les limites d’opération du nouvel aimant.

 

Retour en haut