Les sujets de thèses

11 sujets IRFU

Dernière mise à jour :


««

• Physique nucléaire

 

DE NOUVELLES VOIES POUR PRODUIRE DES NOYAUX LOURDS RICHES EN NEUTRONS

SL-DRF-25-0361

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire études du noyau atomique (LENA) (LENA)

Saclay

Contact :

barbara sulignano

Date souhaitée pour le début de la thèse : 01-10-2025

Contact :

barbara sulignano
CEA - DRF/IRFU/DphN

01 69 08 42 27

Directeur de thèse :

barbara sulignano
CEA - DRF/IRFU/DphN

01 69 08 42 27

L'un des projets de recherche les plus importants de ces dernières années est né d'une question critique et non résolue concernant l'origine naturelle des noyaux plus lourds que le fer. Dans les noyaux lourds, riches en neutrons, la théorie predits l’existence d'un îlots de stabilité atour des nombres de protons Z = 114, 120 ou 126 et le nombre de neutrons N = 184.
Cependant, les efforts récents pour synthétiser des éléments superlourds et explorer les noyaux riches en neutrons N = 126 se sont heurtés à des difficultés considérables en raison des sections efficaces extrêmement faibles des réactions traditionnelles de fusion-évaporation. Ces facteurs soulignent le besoin urgent d'une solution alternative pour la synthèse des éléments super-lourds.Ces facteurs soulignent l'urgence de trouver d'autres mécanismes de réaction. L'une d'entre elles a été identifiée dans les réactions de transfert de multinucléons (MNT), qui offrent une voie prometteuse vers les noyaux lourds riches en neutrons. Nous travaillons sur ce mécanisme de réaction depuis plusieurs années, en réalisant des expériences à l'Argonne National Laboratory et dans d'autres laboratoires internationaux. L'objectif de cette thèse est d'analyser les données recueillies lors de l'expérience que ont a réaliser à Argonne (fin 2023) et de proposer une nouvelle expérience au spectromètre Prisma (Legnaro National Lab) couplé avec le détecteur Agata.
Développement d’un système dosimétrique pour le suivi des traces alpha dans les essais in vitro de la radiothérapie interne vectorisée alpha

SL-DRF-25-0123

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Département Grand Accélérateur National d’Ions Lourds (GANIL)

Grand Accélérateur National d’Ions Lourds (GANIL)

Saclay

Contact :

Anne-Marie FRELIN-LABALME

Date souhaitée pour le début de la thèse : 01-10-2025

Contact :

Anne-Marie FRELIN-LABALME
CEA - DRF/IRFU//GANIL

02 31 45 45 30

Directeur de thèse :

Anne-Marie FRELIN-LABALME
CEA - DRF/IRFU//GANIL

02 31 45 45 30

Labo : https://www.ganil-spiral2.eu/wp-content/uploads/2024/10/DESYDOAL-thesis2025.pdf

La thérapie alpha ciblée (TAC) est une nouvelle méthode prometteuse pour traiter le cancer. Elle utilise des substances radioactives appelées radioisotopes émetteurs alpha, qui sont injectées dans le corps du patient. Ces substances se dirigent spécifiquement vers les cellules cancéreuses, ce qui permet de concentrer la radiation là où elle est le plus nécessaire, cest-à-dire près des tumeurs. Les particules alpha sont particulièrement efficaces car elles ont une courte portée et peuvent détruire les cellules cancéreuses de manière très ciblée.
Comme pour tout nouveau traitement, la TAC doit passer par des études précliniques pour vérifier son efficacité et la comparer à dautres traitements existants. Une partie importante de ces recherches se fait en laboratoire, où des cellules cancéreuses sont exposées à ces substances radioactives pour observer leurs effets, comme le taux de survie des cellules. Cependant, évaluer limpact des particules alpha nécessite des méthodes spécifiques, car leur comportement es
Etude des mécanismes de réaction pour la synthèse d’éléments super-lourds

SL-DRF-25-0161

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Département Grand Accélérateur National d’Ions Lourds (GANIL)

Grand Accélérateur National d’Ions Lourds (GANIL)

Saclay

Contact :

David BOILLEY

Dieter ACKERMANN

Date souhaitée pour le début de la thèse : 01-10-2025

Contact :

David BOILLEY
Université de Caen - GANIL/Grand Accélérateur National d’Ions Lourds

02 31 45 4781

Directeur de thèse :

Dieter ACKERMANN
CEA - DRF/IRFU//GANIL

0231454742

Labo : https://www.ganil-spiral2.eu/wp-content/uploads/2024/10/SHEDyn-thesis2025.pdf

Cette thèse a pour but d’étudier les mécanismes de réaction menant à la synthèse de noyaux super-lourds en appui au programme de recherche expérimental qui sera développé auprès de l’installation S3 de Spiral2 au GANIL à Caen. Elle vise à renforcer la précision de la modélisation de la réaction en évaluant, grâce à l’analyse d’incertitudes, les expériences les plus prometteuses pour contraindre les paramètres et la modélisation.

Lune des principales activités de la physique nucléaire est létude des propriétés des noyaux exotiques jusquaux limites d’existence des noyaux, dans les régions où les rapports proton-neutron sont extrêmes (driplines proton/neutron) et aux nombres de masse A et atomiques Z les plus élevés. Les noyaux dits super-lourds ne peuvent exister au-delà de la limite établie par le modèle de la goutte liquide – définie par une barrière de fission qui disparaît –, que grâce aux effets en couches de la mécanique quantique. Ces noyaux sont particulièrement intéressants parce quils se situent à la limite entre la physique des petits systèmes à quelques corps et celle des systèmes à grand nombre de corps : les nombres magiques de protons et de neutrons, Z et N, sont remplacés par une région ou un îlot de magicité étendu en Z et N.

La synthèse de ces noyaux très- et super-lourds par des réactions de fusion-évaporation est un défi expérimental en raison des sections efficaces extrêmement faibles. La modélisation de la réaction complète afin de guider les expériences est également un défi difficile, car les modèles développés pour les noyaux plus légers ne peuvent pas être simplement extrapolés. Les réactions de fusion sont entravées par rapport à ce qui est observé avec les noyaux légers en raison de la très forte interaction Coulombienne, qui est renforcée par la forte répulsion causée par le grand nombre de charges positives (protons) dans le système, en concurrence avec la force dattraction forte (nucléaire) dans un régime hautement dynamique. Le pouvoir prédictif des modèles doit être amélioré, bien que lorigine du phénomène dentrave soit qualitativement bien comprise. Les ambiguïtés quantitatives sont suffisamment importantes pour observer des différences de quelques ordres de grandeur dans les probabilités de fusion calculées par différents modèles. Une petite modification de la section efficace pourrait nécessiter de nombreux mois pour réaliser des expériences réussies.

Au GANIL, en collaboration avec dautres instituts, nous avons développé un modèle qui décrit les trois étapes de la réaction de synthèse des noyaux super-lourds. Les développements futurs se concentreront sur la recherche de moyens dévaluer les modèles afin daméliorer leur pouvoir prédictif, notamment en concevant des expériences spécifiques afin de contraindre l’amplitude de lentrave à la fusion. Bien entendu, une analyse minutieuse de lincertitude permettra daméliorer le pouvoir prédictif des modèles. Des méthodes standard ainsi que des méthodes danalyse de données de pointe telles que lanalyse bayésienne peuvent être utilisées.

Ce travail de doctorat sera effectué en collaboration avec le groupe expérimental du GANIL et une équipe de recherche à Varsovie (Pologne). En fonction des compétences de létudiant, la thèse sera plus orientée vers des développements formels ou vers les expériences menées dans la nouvelle installation S3 sur Spiral2. La participation aux expériences est possible.

Exploration de la dynamique des gluons dans le proton via la photoproduction exclusive du méson phi avec CLAS12

SL-DRF-25-0430

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire structure du nucléon (LSN) (LSN)

Saclay

Contact :

Pierre CHATAGNON

Francesco BOSSU

Date souhaitée pour le début de la thèse : 01-10-2025

Contact :

Pierre CHATAGNON
CEA - DRF/IRFU/DPhN/LSN


Directeur de thèse :

Francesco BOSSU
CEA - DRF/IRFU/SPhN


Labo : https://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=4189

Les protons et neutrons sont constitués de partons (quarks et gluons) qui interagissent via la force forte, régie par la Chromodynamique Quantique (QCD). Si la QCD est calculable à haute énergie, sa complexité se révèle à basse énergie, nécessitant des contributions expérimentales pour comprendre les propriétés des nucléons, telles que leur masse et leur spin. L'extraction expérimentale des Distributions Généralisées des Partons (GPDs), qui décrivent les impulsions longitudinales et les positions transverses des partons dans les nucléons, fournit des informations cruciales sur ces propriétés fondamentales.
Cette thèse se concentre sur l’analyse des données du détecteur CLAS12, une expérience faisant partie de l'infrastructure de recherche du Jefferson Lab, l'un des 17 laboratoires nationaux aux États-Unis. CLAS12, un détecteur de 15 mètres de long à cible fixe et à grande acceptation, est dédié à la physique hadronique, notamment à l'extraction des GPDs. L'étudiant/e sélectionné/e étudiera la photoproduction exclusive du méson phi (gamma p -->phi p’), sensible aux GPDs des gluons, encore largement inexplorées. Il/elle développera un cadre pour étudier cette réaction dans le canal de désintégration leptonique (phi --> e+e-) et concevra un algorithme novateur basé sur des Graph Neural Network pour améliorer l'efficacité de détection des protons diffusés.
La thèse visera à extraire la section efficace de la photoproduction du phi et à l'interpréter en termes de distribution de masse dans les protons. Réalisé au Laboratoire de Structure du Nucléon (LSN), ce projet implique une collaboration internationale au sein de la collaboration CLAS, des voyages au Jefferson Lab pour la collecte de données, et des présentations lors de conférences. La maîtrise de la physique des particules, de la programmation (C++/Python) et de l’anglais est requise. Des connaissances de base en détecteurs de particules et en apprentissage automatique sont un atout, mais non obligatoires.
Formes, rotations et vibrations du noyau du 106Cd étudiées par spectroscopie gamma avec GRIFFIN et AGATA

SL-DRF-25-0362

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire études du noyau atomique (LENA) (LENA)

Saclay

Contact :

Magda Zielinska

Date souhaitée pour le début de la thèse : 01-10-2025

Contact :

Magda Zielinska
CEA - DRF/IRFU/DPhN/LENA

01 69 08 74 86

Directeur de thèse :

Magda Zielinska
CEA - DRF/IRFU/DPhN/LENA

01 69 08 74 86

Labo : https://irfu.cea.fr/dphn/Phocea/Vie_des_labos/Ast/ast_sstheme.php?id_ast=293

Voir aussi : https://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast_technique.php?id_ast=790

Une des questions phares dans le domaine de la structure nucléaire concerne l'émergence de collectivité, et son lien avec la structure microscopique du noyau. Les noyaux atomiques peuvent manifester des comportements dits collectifs, où tous leurs constituants, les protons et les neutrons, se déplacent ensemble, à une fréquence donnée. Il s’agit surtout aux vibrations et rotations. Si un noyau n’est pas déformé, il ne peut être mis en rotation lorsqu’on l’excite ; en revanche, il présente des vibrations autour de sa forme d’équilibre sphérique.
Les isotopes pairs de cadmium ont longtemps été des cas d’école du comportement vibrationnel. Cette interprétation a cependant été remise en question suite aux études expérimentales récentes, qui ont, avec l'aide des calculs théoriques, conduit à la réorganisation des schémas de niveaux du 110,112Cd en termes d’excitations rotationnelles, suggérant la présence d’une variété de formes dans ces noyaux.
Grâce à un récent travail de thèse dans notre groupe, cette nouvelle interprétation a été étendue au noyau du 106Cd. Cependant, il reste plusieurs questions concernant la nature des niveaux observés a basse énergie d’excitation dans ce noyau. De plus, nous avons obtenu des indications que certains états excites peuvent être liés au couplage entre les vibrations du type dit octupolaire (c’est-à-dire le noyau se déforme adoptant une forme de poire) et quadripolaire (le noyau oscille entre les formes allongées et aplaties). Pour vérifier cette hypothèse, une expérience de décroissance bêta de précision a été proposée à TRIUMF (Vancouver, Canada) avec le spectromètre le plus avancé au monde dédié aux mesures de décroissance bêta, appelé GRIFFIN, pour chercher les voies de désintégration faibles dans le schéma de niveaux du 106Cd, et déterminer sans ambiguïté les spins des états excites grâce à l'analyse de corrélations angulaires gamma-gamma. Cette mesure permettra de résoudre les diverses énigmes concernant la structure de ce noyau, notamment la triaxialité de son état fondamental et la coexistence de formes multiples.
L’étudiant sera en charge de l’analyse de cette expérience, qui sera réalisée en 2025. Ensuite, en s’appuyant sur les résultats de cette analyse, elle/il procédera à une réévaluation de sections efficaces de peuplement de niveaux excités dans le 106Cd, qui ont été mesurées avec le spectromètre gamma de nouvelle génération AGATA au GANIL en utilisant la technique d’excitation coulombienne. Grâce à cette combinaison de mesures, nous espérons d’obtenir, pour la première fois dans la charte de noyaux, l’ensemble complet de probabilités de transition entre les états résultant du couplage entre les vibrations du type octupolaire et quadripolaire. Nous procéderons ensuite a l'interprétation des résultats obtenus en collaboration étroite avec des théoriciens.
Ce travail de thèse permettra à l’étudiant de suivre un projet dans son ensemble, de la préparation de l’expérience jusqu’à son interprétation théorique, et de se familiariser avec plusieurs techniques expérimentales de spectroscopie gamma, en utilisant les spectromètres gamma les plus avancés au monde.
Mesure du flux elliptique des quarks charmés dans les collisions Pb-Pb semi-centrales à 5 TeV au CERN avec LHCb.

SL-DRF-25-0326

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire plasma de quarks et gluons (LQGP) (LQGP)

Saclay

Contact :

Benjamin Audurier

Jean-Yves OLLITRAULT

Date souhaitée pour le début de la thèse : 01-10-2025

Contact :

Benjamin Audurier
CEA - DRF/IRFU/DPhN/LQGP


Directeur de thèse :

Jean-Yves OLLITRAULT
CNRS-URA 2306 - DSM - Institut de Physique Théorique

01 6908 7269

Labo : https://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=500

Les collisions dions lourds offrent une opportunité unique détudier le plasma de quarks et de gluons (QGP), un état exotique de la matière dans lequel les quarks et les gluons ne sont plus confinés dans les hadrons, et qui aurait existé quelques microsecondes après le Big Bang. Parmi les sondes clés pour létude du QGP figurent les quarks charmés. En effet, ces derniers conservent lhistoire de leurs interactions avec le QGP, les rendant essentiels pour comprendre les propriétés du QGP. La production de quarks charmés et leurs interactions avec le QGP sont étudiées à travers les mesures des hadrons, mésons et baryons contenant au moins un quark ou antiquark charm, tels que les mésons D0 ou les baryons Lambda_c. Cependant, le processus dhadronisation — la manière dont les quarks charm se confinent dans des baryons ou mésons incolores — reste encore mal compris.

Une approche prometteuse pour approfondir la compréhension de lhadronisation des quarks charmés réside dans la mesure de leur écoulement elliptique, une mesure de corrélations angulaires à longue distance, une signature des effets collectifs dus à la thermalisation du QGP. En comparant lécoulement elliptique des mésons D0 et des baryons Lambda_c, sensible aux propriétés du milieu créé, les chercheurs peuvent approfondir leurs connaissance sur le mécanisme dhadronisation des quarks charmés.

Pour mesurer cet écoulement elliptique, létudiant.e sélectionné.e développera une méthode innovante exploitant pleinement les capacités du détecteur LHCb. Cette méthode, jamais appliquée auparavant, permet une interprétation plus intuitive et théoriquement robustes des mesures découlement elliptique par rapport aux méthodes traditionnelles. Le/la candidat.e adaptera cette technique pour le détecteur LHCb afin de mesurer, comparer et interpréter lécoulement elliptique des baryons charmés Lambda_c et des mésons D0 dans les nouvelles données PbPb collectés par LHCb en 2024.
Mesures de rendement de fission pour l'évaluation de la chaleur de désintégration du combustible nucléaire usé.

SL-DRF-25-0224

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Département Grand Accélérateur National d’Ions Lourds (GANIL)

Grand Accélérateur National d’Ions Lourds (GANIL)

Saclay

Contact :

Diego RAMOS-DOVAL

Fanny FARGET

Date souhaitée pour le début de la thèse : 01-10-2025

Contact :

Diego RAMOS-DOVAL
CEA - DRF/IRFU//GANIL

0231454943

Directeur de thèse :

Fanny FARGET
CNRS - GANIL

0231454857

Labo : https://www.ganil-spiral2.eu/wp-content/uploads/2024/10/FYM_HEAT-thesis2025.pdf

La réaction de fission est un processus violent au cours duquel un noyau lourd est divisé en deux composants, les fragments de fission. La distribution des fragments de fission produits est très large ; plus de 300 isotopes radioactifs différents peuvent être produits lors de la fission et leur désintégration radioactive est une question importante pour la manipulation et le stockage sûr du combustible nucléaire usé.
Le dispositif expérimental disponible au GANIL permet une identification précise et complète des fragments de fission, avant leur désintégration radioactive.
Une campagne expérimentale a été menée au VAMOS en 2024 pour étudier la fission de différents actinides produits dans des réactions de transfert de plusieurs nucléons, sur la base de la technique de cinématique inverse.
Les données obtenues constituent une référence importante pour les modèles nucléaires et les codes de simulation de la chaleur dégagée lors de la désintégration du combustible nucléaire usagé.
Ces données innovantes contr
Near-threshold phenomena in nuclear structure and reactions

SL-DRF-25-0417

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Département Grand Accélérateur National d’Ions Lourds (GANIL)

Grand Accélérateur National d’Ions Lourds (GANIL)

Saclay

Contact :

Marek PLOSZAJCZAK

Date souhaitée pour le début de la thèse : 01-10-2025

Contact :

Marek PLOSZAJCZAK
CEA - DRF/IRFU//GANIL

02 31 45 4590

Directeur de thèse :

Marek PLOSZAJCZAK
CEA - DRF/IRFU//GANIL

02 31 45 4590

Labo : https://www.ganil-spiral2.eu/wp-content/uploads/2024/10/GSM-thesis2025.pdf

Il est proposé d'étudier les effets saillants du couplage entre les états discrets et continus à proximité de divers seuils d'émission de particules en utilisant le modèle en couches dans le plan d'énergie complexe. Ce modèle fournit la formulation unitaire d'un modèle en couches standard dans le cadre du système quantique ouvert pour la description d'états nucléaires bien liés, faiblement liés et non liés. Des études récentes ont démontré l'importance de l'énergie de corrélation résiduelle du couplage aux états du continuum pour la compréhension des états propres, leur énergie et modes de désintégration, au voisinage du canaux de reaction. Cette énergie résiduelle n'a pas encore été étudiée en details. Les études de cette thèse approfondiront notre compréhension des effets structurels induits par le couplage au continuum et apporteront un support aux études expérimentales au GANIL et ailleurs.

RECHERCHE DE LA DÉSINTÉGRATION NUCLÉAIRE EN DEUX PHOTONS

SL-DRF-25-0067

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire études du noyau atomique (LENA) (LENA)

Saclay

Contact :

Wolfram KORTEN

Date souhaitée pour le début de la thèse : 01-10-2025

Contact :

Wolfram KORTEN
CEA - DRF/IRFU/DPhN/LENA

+33169084272

Directeur de thèse :

Wolfram KORTEN
CEA - DRF/IRFU/DPhN/LENA

+33169084272

Page perso : https://www.researchgate.net/profile/Wolfram_Korten

Labo : http://irfu.cea.fr/dphn/Phocea/Vie_des_labos/Ast/ast_sstheme.php?id_ast=293

Voir aussi : https://www.gsi.de/en/work/research/appamml/atomic_physics/experimental_facilities/esr.htm

La désintégration nucléaire à deux photons, ou double-gamma, est un mode de désintégration rare dans les noyaux atomiques, par lequel un noyau dans un état excité émet deux rayons gamma simultanément. Les noyaux pairs avec un premier état excité 0+ sont des cas favorables à la recherche dune branche de désintégration double-gamma, puisque lémission dun seul rayon gamma est strictement interdite pour les transitions 0+ to 0+ en raison de la conservation du moment angulaire. La désintégration double-gamma reste encore une branche de désintégration très petite (1E-4) en compétition avec les modes de désintégration dominants (de premier ordre) des électrons de conversion interne atomique (ICE) ou de la création de paires internes positron-électron (e+-e-) (IPC).

Le projet de thèse comporte deux parties expérimentales distinctes: Premièrement, nous stockons des ions nus (entièrement épluchés) dans leur état excité 0+ dans lanneau de stockage dions lourds (ESR) au GSI pour rechercher la désintégration double-gamma dans plusieurs nucléides. Pour les atomes neutres, létat excité 0+ est un état isomérique à durée de vie plutôt courte, de lordre de quelques dizaines à quelques centaines de nanosecondes. Cependant, aux énergies relativistes disponibles au GSI, tous les ions sont entièrement épluchés de leurs électrons atomiques et la désintégration par émission ICE nest donc pas possible. Si létat dintérêt est situé en dessous du seuil de création de paires, le processus IPC nest pas non plus possible. Par conséquent, les noyaux nus sont piégés dans un état isomérique à longue durée de vie, qui ne peut se désintégrer que par émission double-gamma vers létat fondamental. La désintégration des isomères est identifiée par la spectroscopie de masse Schottky résolue dans le temps. Cette méthode permet de distinguer lisomère et létat fondamental par leur temps de révolution (très légèrement) différent dans lESR, et dobserver la disparition du pic de lisomère dans le spectre de masse avec un temps de décroissance caractéristique. Des expériences établissant la désintégration double-gamma dans plusieurs nucléides (72Ge, 98Mo, 98Zr) ont déjà été réalisées avec succès et une nouvelle expérience a été acceptée par le comité de programme du GSI et sa réalisation est prévue pour 2025.

La deuxième partie concerne lobservation directe des photons émis à laide de la spectroscopie des rayons gamma. Alors que les expériences sur les anneaux de stockage permettent de mesurer la durée de vie partielle de la double désintégration gamma, des informations supplémentaires sur les propriétés nucléaires ne peuvent être obtenues quen mesurant les photons eux-mêmes. Une expérience test a été réalisée pour étudier sa faisabilité et les plans dune étude plus détaillée devraient être élaborés dans le cadre du projet de doctorat.
Réactions nucléaires induites par des anti-ions légers – apport du modèle INCL

SL-DRF-25-0439

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire etudes et applications des reactions nucleaires (LEARN) (LEARN)

Saclay

Contact :

Jean-Christophe DAVID

Date souhaitée pour le début de la thèse : 01-10-2025

Contact :

Jean-Christophe DAVID
CEA - DRF/IRFU/DPhN/LEARN

0169087277

Directeur de thèse :

Jean-Christophe DAVID
CEA - DRF/IRFU/DPhN/LEARN

0169087277

Labo : https://irfu.cea.fr/dphn/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=2105

L’interaction d’une antiparticule avec un noyau atomique est un type de réaction qu’il faut savoir simuler pour pouvoir répondre à des questions fondamentales. On peut citer comme exemples, la collaboration PANDA (FAIR) avec des faisceaux d’antiproton de l’ordre du GeV qui envisage l’étude des interactions nucléon-hypéron, ainsi que celle de la peau de neutron, par la production d’hypérons et d’antihypérons. Cette même peau de neutron est aussi étudiée avec des antiprotons au repos avec l’expérience PUMA (AD - Cern). Au même endroit nous collaborons avec l’expérience ASACUSA pour l’étude de la production des particules chargées. Pour répondre à ces études, notre code de réactions nucléaires INCL a été étendu aux antiprotons (thèse D. Zharenov soutenue fin 2023). Au-delà de l’antiproton il y a les antideutérons et antiHe-3. Ces antiparticules sont d’un intérêt plus récent, avec notamment lexpérience GAPS (General AntiParticle Spectrometer) qui vise à mesurer les flux de ces particules dans le rayonnement cosmique. L’idée est de mettre en évidence la matière noire, dont ces particules seraient des produits de décroissance, et dont la quantité mesurée doit ressortir plus facilement du bruit de fond astrophysique que dans le cas des antiprotons. Le sujet proposé est donc l’implantation des anti-noyaux légers dans INCL avec comparaisons à des données expérimentales.
Test d’invariance de renversement du temps dans la désintégration beta nucléaire : analyse des données de MORA à JYFL

SL-DRF-25-0228

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Département Grand Accélérateur National d’Ions Lourds (GANIL)

Grand Accélérateur National d’Ions Lourds (GANIL)

Saclay

Contact :

Pierre DELAHAYE

Date souhaitée pour le début de la thèse : 01-10-2025

Contact :

Pierre DELAHAYE
CNRS - GANIL/Grand Accélérateur National d’Ions Lourds

02 31 45 4539

Directeur de thèse :

Pierre DELAHAYE
CNRS - GANIL/Grand Accélérateur National d’Ions Lourds

02 31 45 4539

Labo : https://www.ganil-spiral2.eu/wp-content/uploads/2024/10/AniMOJy-thesis2025.pdf

L’expérience MORA recherche des signes de violation de CP dans la désintégration beta d’ions piégés polarisés. Elle emploie des techniques de pointe afin d’atteindre une sensibilité jamais atteinte pour la mesure de la corrélation D (10-4). Cette corrélation est sensible à une Nouvelle Physique qui pourrait expliquer l’asymétrie matière antimatière observée dans l’univers. La thèse consiste en l’analyse des données de la campagne qui se poursuit à Jyväskylä pour 23Mg+ et 39Ca+, en Finlande.

 

Retour en haut