On February 12, 2022, the ANTARES neutrino telescope (Astronomy with a Neutrino Telescope and Abyss environmental RESearch) put an end to its data taking started in 2007. During 15 years, thousands of neutrinos, precious elusive particles witnesses of the cataclysmic phenomena of the Universe, were detected at 2500 m in the Mediterranean abyss. The objective: find abnormal accumulations in the neutrino sky map revealing sources at the still mysterious origin of the cosmic rays, a rain of particles discovered more than a century ago. The CEA team played a leading role in the success of this project, a pioneer in multi-messenger astronomy.
At Irfu, neutrino physics is studied using different sources such as reactors, accelerators and radioactive sources.
Irfu teams have been engaged for several decades in a long quest to study the neutrino in all its aspects, to understand its place in the Standard Model of particle physics and even more, but also its contribution to the evolution of the Universe since its first moments. The traditional summer conferences organized last year were an opportunity to measure the progress made by the armada of international experiments with which our institute is working to achieve this ultimate goal. A look back at year 2021, full of lessons and promises for the future...
At Irfu, neutrino physics is studied using different sources such as reactors, accelerators and radioactive sources.
Irfu teams have been engaged for several decades in a long quest to study the neutrino in all its aspects, to understand its place in the Standard Model of particle physics and even more, but also its contribution to the evolution of the Universe since its first moments. The traditional summer conferences organized last year were an opportunity to measure the progress made by the armada of international experiments with which our institute is working to achieve this ultimate goal. A look back at year 2021, full of lessons and promises for the future...
IRFU scientists and the H.E.S.S. collaboration observe time-dependent particle acceleration in our Galaxy for the first time. Novae are powerful eruptions on the surface of a white dwarf in a binary star system, in which a larger star and a smaller star orbit each other. A nova creates a shock wave that tears through the surrounding medium, pulling particles with it and accelerating them to extreme energies. The H.E.S.S. high-energy gamma-ray observatory in Namibia has now been able to observe this acceleration process for the first time. Surprisingly, the detected nova seems to cause particles to accelerate at energies reaching the theoretical limit.
These results were published in Science: https://www.science.org/doi/10.1126/science.abn0567
At Irfu, neutrino physics is studied using different sources such as reactors, accelerators and radioactive sources.
Irfu teams have been engaged for several decades in a long quest to study the neutrino in all its aspects, to understand its place in the Standard Model of particle physics and even more, but also its contribution to the evolution of the Universe since its first moments. The traditional summer conferences organized last year were an opportunity to measure the progress made by the armada of international experiments with which our institute is working to achieve this ultimate goal. A look back at year 2021, full of lessons and promises for the future...