Abstract: Le proton est un objet complexe rempli de particules élémentaires, les quarks et les gluons, interagissant entre elles via l'interaction forte. De nombreuses observables sont sensibles aux densités moyennes des quarks et des gluons, mais peu le sont aux fluctuations de ces densités. La conjecture théorique de la saturation des gluons prédit la disparition de la fluctuation des gluons à très haute énergie. Des chercheurs de l'Irfu de la collaboration ALICE au LHC ont réalisé une première mesure sensible aux fluctuations de la densité de gluons dans le proton. Cette mesure ouvre la voie à de futures mesures à plus haute énergie.

Une refonte complète de la méthode par sommation pose de solides bases pour le calcul des spectres d’antineutrinos émis par un réacteur nucléaire permettant d’apporter un éclairage sur l’origine de leurs anomalies et qui profitera aux futures expériences.

Soutenus par le programme transverse de compétence « simulation numérique » du CEA, l’Irfu, le Laboratoire National Henri Becquerel de la DRT et le Service d'Étude des Réacteurs et de Mathématiques Appliquées de la DES se sont associés pour revoir en profondeur les calculs de spectres d'antineutrinos émis par un réacteur nucléaire. Une refonte complète de la méthode par sommation pose ainsi de nouvelles et solides bases pour ces calculs, et a fait la une du journal Physical Review C [1] le 27 novembre 2023. Celle-ci intègre de nombreuses améliorations relevant de la modélisation de la désintégration bêta et de l’évaluation des données nucléaires. Elle quantifie d’autre part l’ensemble des effets systématiques susceptibles d’influer sur les calculs afin de proposer pour la première fois un modèle complet d’incertitude. Une avancée majeure qui fait désormais du modèle par sommation, longtemps critiqué pour son caractère approximatif et incomplet, un outil robuste pour la prédiction des spectres d’antineutrinos de réacteur ainsi que pour l’interprétation des mesures expérimentales en cours et à venir. Ce travail stimulera probablement des recherches ciblées pour vérifier et améliorer les données nucléaires utilisées en entrée de ce nouveau modèle, avec un impact potentiellement très large, de la physique des neutrinos à de nombreux aspects de la science et de la technologie des réacteurs nucléaires. Il apporte également un éclairage intéressant sur l’origine des anomalies des antineutrinos de réacteur [2,3].

Des ingénieurs du Département d'Ingénierie des Systèmes de l'rfu, co-responsables de plusieurs sous-projets EPICS, ont participé à une expérience de "document-athon" particulièrement enrichissante, aussi bien techniquement qu'humainement. 

EPICS est une collection de logiciels "Open Source" qui permet de gérer la partie contrôle-commande d'une expérience. C'est un sujet vaste et complexe, qui évolue constamment et qui nécessite donc d'être correctement documenté. Cet effort de documentation demande beaucoup de ressources. Le document-athon consiste à réunir physiquement et virtuellement, les contributeurs EPICS autour d'une table, pour travailler sur différents sujets liés à sa documentation. C'était aussi une occasion unique d'échanger entre confrères du monde entier sur différents sujets : problématiques communes, modes de fonctionnements, solutions techniques adoptées ou à l'étude.

Le site docs.epics-controls.org centralise à présent presque tous les outils EPICS et a pour objectif de devenir l'emplacement central/privilégié de sa documentation.

 

 

Les matériaux supraconducteurs à basse température critique sont largement utilisés dans les aimants à haut-champ mais leur comportement est intimement lié aux déformations qu’ils subissent. Dès lors, des études sur les impacts des efforts sur les structures mécaniques sont indispensables. Le projet SUPRAMITEX participe à l’effort de recherche en utilisant le code parallèle AMITEX-FFTP développé dans le cadre du projet SIMU/MATIX pour réaliser des simulations mécaniques non-linéaires sur des microstructures hétérogènes. Ce travail réalisé a permis de montrer l’intérêt du code AMITEX pour simuler le comportement mécanique de ces composants, à différentes échelles, pour des comportements élastique et élasto-plastique des pour échelles de simulation jusqu’ici irréalisables.

Dans le domaine de l’intelligence artificielle, la concurrence internationale est rude. Alors quand des chercheurs du CEA des instituts Joliot et Irfu tiennent la dragée haute aux start-ups et autres entreprises spécialisées en IA, on ne peut que leur tirer notre chapeau. Récit d’un succès dans le domaine de la reconstruction d’images IRM.

Voilà un mur que les White Walkers ne franchiront pas... 

Une collaboration internationale rassemblant l’Irfu (CEA, Université Paris-Saclay), l’Institut d’Astronomie de l’Université d’Hawaï, le LPC (Université Clermont Auvergne), l’IP2I (Université Claude Bernard de Lyon), et le Racah Institute of Physics (Université Hébraïque de Jérusalem), a découvert une immense structure dans la distribution des galaxies, baptisée "Mur du Pôle Sud". 

Grâce à une méthode fondée sur les champs de vitesses des galaxies, cette région du ciel, jusqu'à lors inconnue car masquée par des nuages moléculaires et de poussières situés en avant plan dans notre galaxie, apporte une nouvelle pièce au puzzle de la toile cosmique de notre Univers proche. Cette toile cosmique est constituée de nœuds connectés par des filaments,  séparant des vides. Les galaxies sont entrainées des vides vers les filaments puis vers les attracteurs gravitationnels situés aux nœuds de la toile. Les filaments, pris en sandwich entre des vides, peuvent prendre une forme aplatie pour constituer des murs. 

Le Mur du Pôle Sud a une section rectiligne immense (220 Mpc) aux extrémités desquelles il s'incurve pour épouser la frontière de Laniakea. 

Ces travaux sont publiés dans APJ journal https://doi.org/10.3847/1538-4357/ab9952 

Patrick Hennebelle du Département d'astrophysique de l’Irfu va diriger une équipe de recherche internationale qui vient de recevoir une subvention ERC Synergy. Le financement est accordé au projet ECOGAL, dans le cadre duquel des chercheurs d'Allemagne, de France et d'Italie collaborent pour développer une compréhension de l’"écosystème galactique" de la Voie lactée.

Le défi de ces 4 chercheurs et de leurs équipes est de construire un modèle prédictif unique pour la formation des étoiles et des planètes dans notre galaxie. Pour comprendre la formation de notre galaxie à toutes ses échelles il est nécessaire de prendre en compte l'interaction complexe de phénomènes physiques souvent concurrents comme la gravité, la turbulence, les champs magnétiques et le rayonnement dans un milieu complexe qu’est le milieu interstellaire, un grand réservoir de gaz diffus et de poussières qui imprègnent la galaxie. Ce milieu est loin d’être vide : il représente environ 20 % de la masse de la matière visible dans la Voie Lactée. Il fait partie d'un écosystème au sein duquel les étoiles sont formées par effondrement gravitationnel des nuages moléculaires et agissent en retour en émettant leur rayonnement voir en éjectant violemment de la matière

De nouvelles méthodes statistiques révèlent les plus fins détails de l'Univers

Une équipe dirigée par l'Université College de Londres (UCL), en collaboration avec le Département d'Astrophysique du CEA-Irfu, vient d'améliorer considérablement l'analyse des cartes de matière noire dans l'Univers grâce à de nouvelles méthodes d'analyse de données. Les cartes produites par cette analyse démontrent la puissance de ces nouvelles méthodes innovantes pour analyser les futurs grands ensembles de données comme ceux attendus de la prochaine grande mission cosmologique EUCLID. Ces résultats sont publiés dans la revue MNRAS.

 

Au cours des 13,8 milliards d'années d'histoire de l'Univers, des forces attractives et répulsives ont agi pour concentrer la matière dans certaines régions et en laisser d'autres de plus en plus vides. Pour la première fois, une cartographie des grandes structures de l’Univers, y compris celles non observables par les méthodes classiques, a été réalisée en étudiant les mouvements de milliers de galaxies. Ces travaux, impliquant l'Irfu et l’Institut de Physique Nucléaire de Lyon sont parus le 10 août 2017 dans The Astrophysical Journal.

Des chercheurs français améliorent la qualité des images radio pour le télescope SKA

De nouvelles techniques de traitement de l'image ont été discutées le 10 novembre 2016 à la conférence scientifique du radiotélescope SKA (Square Kilometer Array) à Goa, en Inde, lorsque des chercheurs français ont communiqué à la communauté astronomique des travaux prometteurs entrepris en France pour développer de nouveaux procédés d’analyse d’image en radioastronomie avec de nombreuses applications potentielles. Des équipes françaises de l'Observatoire de Paris, de l'Observatoire de la Côte d'Azur, du Laboratoire AIM (Astrophysique-Instrumentation-Modélisation), Labex UnivEarthS, de l'ENS Cachan et de l'Université Paris X travaillent activement sur des algorithmes de pointe pour l'étalonnage et la déconvolution des images de la radioastronomie.

Les astronomes du Sloan Digital Sky Survey (SDSS) ont utilisé 15 000 quasars lointains très lumineux pour mesurer la masse des neutrinos. En considérant simultanément les mesures de l'expérience BOSS et celles du fond diffus cosmologique avec les données du satellite Planck de 2013, une approche combinée aboutit à la limite à 0.15 eV, ce qui constitue la meilleure contrainte à ce jour sur la somme des masse des neutrinos. Les chercheurs de l’Irfu ont joué un rôle moteur dans cette étude.

L’expérience BOSS (Baryon Oscillation Spectroscopic Survey), principale composante de la troisième génération des relevés SDSS (Sloan Digital Sky Survey), est la première à utiliser les fabuleux émetteurs que sont les quasars dans le but de cartographier l'hydrogène intergalactique gazeux et de mesurer ainsi la distribution de la matière dans l'univers âgé de 1 à 3 milliards d’années seulement. La sélection des objets à observer est réalisée par des chercheurs de l'institut de recherche sur les lois fondamentale de l'univers (Irfu, CEA). Le catalogue de quasars du relevé BOSS est produit par des chercheurs du laboratoire Astroparticule et Cosmologie (CNRS/CEA/Université Paris Diderot/Observatoire de Paris/CNES) et de l’Institut d’Astrophysique de Paris (CNRS/Université Pierre et Marie Curie).

 

Lorsque la lumière d'un quasar lointain passe à travers l'hydrogène gazeux qui constitue l’essentiel du milieu intergalactique, elle est plus ou moins absorbée selon la densité plus ou moins grande de la région traversée. Le spectre du quasar, quand il est finalement observé sur Terre par le télescope de l’expérience BOSS, comporte ainsi une succession de pics d’absorption correspondant à toutes les régions denses rencontrées sur la ligne de visée. L’analyse de ces absorptions a déjà permis de réaliser une carte de l’univers tel qu’il était il y a environ 11 milliards d’années, avec laquelle les chercheurs ont pu étudier la formation des structures à grande échelle (typiquement la centaine de millions d’années-lumière) et mesurer la vitesse d’expansion de l’univers à cette époque reculée. Dans cette nouvelle publication, l’équipe de l’Irfu s’est concentrée sur des structures beaucoup plus petites, de l’ordre de quelques millions d'années-lumière, soit de la taille d’un amas de galaxies. A cette résolution, nous observons les nuages de gaz sur le point de former des galaxies.

 

 

Ces nouvelles données sont suffisamment précises pour transmettre des informations sur l'un des ingrédients les moins bien compris de l’univers primordial: les neutrinos. De très faible masse, ces particules se déplacent dans l'univers à des vitesses proche de la vitesse de la lumière, et contrairement à la matière ordinaire, elles ne peuvent pas se regrouper pour former des galaxies. Leur présence a un effet sur la distribution des nuages de gaz, en diluant les grumeaux de l’univers primordial à l’origine de ces nuages. Les cartes cosmologiques mesurées par BOSS portent l’empreinte de l’impact des neutrinos sur les « petites » structures de l'univers, nous permettant ainsi de contraindre indirectement la masse des neutrinos.

Le 4 septembre 2014, la revue Nature publie la découverte, par une équipe internationale incluant un ingénieur-chercheur de l‎’‎Irfu, des frontières de notre superamas de galaxies. Comme le montre la visualisation réalisée à l’Irfu, ce superamas, auquel appartient notre galaxie, la Voie lactée, se révèle bien plus vaste que ce que l’on croyait depuis 50 ans.

 

Cette étude, fondée sur la reconstruction et la visualisation des bassins d‎’‎attraction gravitationnelle à partir des vitesses particulières des galaxies spirales, a été menée conjointement par Brent Tully (University of Hawaii), Hélène Courtois (Université de Lyon), Yehuda Hoffman (Hebrew University, Jerusalem), et Daniel Pomarède, ingénieur-chercheur au Laboratoire d‎’‎Ingénierie Logicielle des Applications Scientifiques (Lilas) du Sédi à l‎’‎Irfu.

Dans cette étude, le logiciel de visualisation de données en trois dimensions SDvision, développé au Lilas dans le cadre du projet COAST, a permis de découvrir et de comprendre la structure tridimensionnelle de notre superamas, en reconstruisant et visualisant les lignes de courant le long desquelles se déplacent les galaxies, mettant en évidence un bassin d‎’‎attraction distinct de ceux des superamas voisins. Ce résultat exceptionnel correspond à la première utilisation du logiciel SDvision sur des données observationnelles, l’application ayant été développée à l’origine pour visualiser des données massives de simulation.

La version anglaise du film ‘L’Univers Recalculé’ produit à l’Irfu par l’équipe COAST (projet conjoint SAp/Sedi) a été sélectionnée, avec 16 autres films sur 26 propositions, pour faire partie du ‘scientific visualization showcase’ projeté lors de la conférence SuperComputing 2012 du 10 au 16 novembre à Salt Lake City.

 

Cette sélection  des films a été présentée au Salt Palace Convention Center le mardi 13 novembre aux participants de SC12 ; il s’agit de films sur la visualisation de résultats de simulations numériques issus de calculs Haute Performance dans différents domaines de recherche en physique.
 

SuperComputing est la plus importante manifestation dans le domaine du Calcul Haute Performance ; elle a lieu tous les ans en novembre aux Etats-Unis et réunit des milliers de participants dans un immense espace d’exposition et de conférences. C’est à l’occasion de SC qu’est remise à jour la fameuse liste TOP500 des plus grosses machines parallèles dans le monde.

 

 

Description du film (version française) 
 

Contact Irfu/Sedi :  Bruno Thooris

Le Conseil d'Administration de la Fondation Simone et Cino del Duca - Institut de France vient d'attribuer le grand prix scientifique 2011 au Professeur Romain Teyssier,  Ingénieur au Commissariat à l'Energie Atomique (CEA) et professeur à l'Université de Zurich. Le Grand Prix scientifique, doté de 300 000 euros, est destiné à récompenser une équipe de chercheurs scientifiques français ou étrangers.  Le Prix 2011 avait pour thème :

« Modélisation scientifique de phénomènes complexes, traitement de l’information associée et simulations numériques ».

Le Jury, composé d’éminents scientifiques en majorité membres de l’Académie des sciences, a décerné le Prix 2011 à Romain Teyssier et à son équipe afin de récompenser leurs découvertes majeures dans le domaine de la modélisation numérique des phénomènes galactiques.

Le Prix sera remis par Mme Catherine Bréchignac, Secrétaire perpétuel de l’Académie des sciences
sous la Coupole de l’Institut de France

 Mercredi 8 juin 2011 à 15 heures

 avec les autres Grands Prix scientifiques et culturels des fondations de l’Institut de France : Christophe et Rodolphe Mérieux, Louis D. , NRJ et Lefoulon-Delalande

 

Le Conseil d'Administration de la Fondation Simone et Cino del Duca vient d'attribuer le grand prix scientifique 2011 au Professeur Romain Teyssier,  Ingénieur au Commissariat à l'Energie Atomique (CEA) et professeur à l'Université de Zurich.

 

Le Grand Prix scientifique de la Fondation Simone et Cino del Duca – Institut de France, doté de 300 000 euros, est destiné à récompenser une équipe de chercheurs scientifiques français ou étrangers. 

 Le Prix 2011 avait pour thème :

« Modélisation scientifique de phénomènes complexes, traitement de l’information associée et simulations numériques ».

 

Le Jury, composé d’éminents scientifiques en majorité membres de l’Académie des sciences, attribue le Prix 2011 au Pr. Romain Teyssier et à son équipe afin de récompenser leurs découvertes majeures dans le domaine de la modélisation numérique des phénomènes galactiques.

 

 

Le Prix sera remis par Mme Catherine Bréchignac, Secrétaire perpétuel de l’Académie des sciences
sous la Coupole de l’Institut de France

 Mercredi 8 juin 2011 à 15 heures

 avec les autres Grands Prix scientifiques et culturels des fondations de l’Institut de France : Christophe et Rodolphe Mérieux, Louis D. , NRJ et Lefoulon-Delalande

 

 

 

 

Le LHC s'apprête à démarrer pour une première période de prise de données de deux ans qui va produire un flux et une quantité de données parmi les plus importants que l'homme ait jamais eu à traiter. Lors de récents tests en situation réelle, la grille de recherche d'Île-de-France (Grif) a répondu aux performances requises en permettant aux physiciens d'accéder aux données reconstruites seulement quatre heures après qu'elles aient été enregistrées au Cern. En 2010, la quantité de données à traiter sera cent fois plus importante. Les équipes de l'Irfu ont montré après ce premier succès qu'elles étaient prêtes pour relever ce défi.

Les simulations numériques dévoilent l'impact dynamique des protons sur leurs accélérateurs

Des chercheurs du Laboratoire d'Étude des Phénomènes Cosmiques de Haute Énergie et des experts en simulations numériques du groupe COAST, ont réalisé le couplage entre un code hydrodynamique 3D et un modèle d'accélération de particules, permettant pour la première fois d'étudier de façon réaliste les signatures morphologiques des protons accélérés par l'onde de choc d'un reste de supernova, en fonction de l'efficacité du mécanisme d'accélération, et en prenant en compte des instabilités qui affectent la zone choquée.

Le Dapnia a rendu opérationnel un des nœuds de la grille de calcul européenne Egee le 1er mars 2005. Le projet Egee a pour but de bâtir une infrastructure de calcul à l’échelon mondial et à destination d’un large éventail d’applications scientifiques, avec en particulier, l’analyse des données du Large Hadron Collider (LHC) qui entrera en service au Cern en 2007.
Le Dapnia joue déjà un rôle de premier plan dans la réalisation de plusieurs des détecteurs qui seront installés auprès du LHC. Sa participation au développement de la grille de calcul Egee montre qu’il se prépare à prendre toute sa place dans les analyses et les découvertes attendues auprès du plus grand accélérateur de particules au monde.

 

Retour en haut