Aug 03, 2020

Photon-photon elastic scattering is a very rare phenomenon in which two real photons interact producing a new real photon pair. The direct observation of this process at high energy, impossible during decades, was done by ATLAS [1] and CMS [2] experiment at CERN between 2016 and 2019. These successes have led the two collaborations to strengthen their involvement in this new field, leading to a new measurement, currently being published by the ATLAS experiment [3]. Presented for the first time at the LHCP conference in May 2020, the new idea is to use photon collisions to search for a hypothetical axion-like particle. As with the first publications on the subject, IRFU members are at the origin of the ideas at work in the analyses carried out at CERN.

Jul 20, 2020

The Sloan Digital Sky Survey (SDSS) published in July a complete analysis of the largest three-dimensional map of the Universe ever created, reconstructing the history of its expansion over a period of 11 billion years.

Dec 18, 2020

The main objective of the KATRIN experiment is the measurement of the mass of the three neutrinos of the Standard Model of Particle Physics. But the analysis of the beta decay spectrum of tritium also allows to search for the trace of a hypothetical fourth neutrino, called sterile neutrino. The collaboration has just published its first analysis in Physical Review Letters (see article) based on four weeks of data acquired in 2019. There is no trace of this fourth neutrino, but this is only the beginning as sensitivity will rapidly improve. The KATRIN spectrometer shows a strong potential to study this possible new facet of the neutrino.

Jun 28, 2020

In its standard form, double beta decay is a process in which a nucleus decays into a different nucleus and emits two electrons and two antineutrinos (2νββ). This nuclear transition is very rare, but it was detected in several nuclei with sophisticated experiments. If neutrinos are their own antiparticles, it’s possible that the antineutrinos emitted during double beta decay annihilate one another and disappear. This is called neutrinoless double beta decay (0νββ), a phenomenon never observed so far. If 0νββ is detected, we will ascertain that neutrinos are their own antiparticles, and this would be a clue as to why they get their tiny masses—and whether they played a part in the existence of our matter-dominated universe. 

The CUPID-Mo experiment, installed at the Modane Underground Laboratory, after one year of data between March 2019 and April 2020 has just set a new global limit for the detection of the signature 0νββ.

 

Retour en haut