Le LEAS (Laboratoire d’Etude des Aimants Supraconducteurs) au CEA Paris-Saclay a entièrement fabriqué une bobine à base du supraconducteur Nb3Sn (niobium-étain), de type SMC (Short Model Coil). Cette bobine est un modèle court destiné à être assemblé dans une structure d’aimant, puis être testé à température cryogénique. Le Nb3Sn est envisagé pour des futurs aimants d’accélérateurs générant des champs magnétiques jusqu’à 16 T (teslas), ce qui doublerait les performances des meilleurs aimants actuellement utilisés. Cela nécessite cependant de nombreux développements technologiques. Ce type de bobine courte a été développé par le Cern, en collaboration avec le CEA, pour permettre de tester de nouvelles technologies et nouveaux procédés de fabrication dans des conditions représentatives des futurs aimants à haut champ. La fabrication de la bobine SMC-CEA s’est déroulée au LEAS de mai à octobre 2021, puis la bobine a été livrée au Cern afin d’être assemblée dans une structure, puis testée dans un bain d’hélium liquide et superfluide, sous fort courant, dans une station dédiée. Les tests ont livré des résultats encourageants, ce qui a permis de démontrer que le LEAS est l'un des rares laboratoires européens à posséder désormais toutes les capacités pour fabriquer des bobines supraconductrices à base de Nb3Sn. Cette preuve de faisabilité valide la première étape du programme de développement des aimants à haut champ pour les futurs accélérateurs.
La mission spatiale LISA (Laser Interferometer Space Antenna), menée conjointement par l’Esa et la Nasa, permettra d’observer les ondes gravitationnelles depuis l’espace. Après son lancement prévu aux alentours de 2035, LISA observera dans le domaine des basses fréquences du spectre gravitationnel encore non exploré et capturera ainsi le signal gravitationnel en provenance de sources qui, à l’heure actuelle, ne sont pas résolues dans la gamme des hautes fréquences des détecteurs au sol tels que Virgo, LIGO, KAGRA, ou encore GEO600. LISA tire ainsi partie de la longueur de sa base de 2.5 millions de kilomètres à comparer par exemple à la base de 4 kilomètres de Virgo. Parmi ces nouvelles sources d’ondes gravitationnelles, les plus représentées seront les binaires galactiques, dont le nombre de détections devrait s’élever à plusieurs dizaines de milliers. Les binaires galactiques sont des systèmes doubles composés d’étoiles à neutrons ou de naines blanches dans différentes combinaisons. Dans la gamme des basses fréquences observées par LISA, les binaires galactiques seront détectées pendant la phase spiralante, soit plusieurs milliers d’années avant la fusion qui sera captée par les détecteurs au sol. Cette phase spiralante permet de caractériser les signatures des effets de la structure et de la dynamique internes des composantes des binaires galactiques sur la forme des ondes gravitationnelles peuvent potentiellement être détectables sur la durée nominale de la mission. LISA permettra donc de comprendre l’état de la matière au sein des objets compacts composant les systèmes binaires galactiques, leur déformabilité ou encore leur magnétisme, au travers de l’évolution séculaire de ces systèmes. Dans une étude tout juste publiée dans la revue Physical Review D (DOI : https://doi.org/10.1103/PhysRevD.105.124042), une équipe constituée des membres du SYRTE à l’Observatoire de Paris et du LDE3 du DAp/Irfu au CEA, a démontré que l’effet du magnétisme au sein d’un système binaire galactique pourrait être mesuré par LISA.
La mission PLATO de l'ESA a reçu le feu vert pour poursuivre son développement après la revue critique conclue avec succès le 11 janvier 2022.
PLATO, ou PLANetary Transits and Oscillations of stars, est la troisième mission de classe moyenne du programme Cosmic Vision de l'ESA. Son objectif est de trouver et d'étudier un grand nombre de systèmes planétaires, en mettant l'accent sur les propriétés des planètes semblables à la Terre dans la zone habitable autour des étoiles de type solaire. PLATO a également été conçu pour étudier l'activité sismique dans les étoiles, ce qui permettra la mesure précise des paramètres des étoiles hôtes des planètes, y compris leur âge.
La revue a vérifié la maturité de l'ensemble du segment spatial (le module de service et le module de charge utile), confirmant la solidité des interfaces satellite-charge utile, le calendrier de développement de la charge utile. Un accent particulier a été mis sur la production en série des 26 caméras, et la robustesse du calendrier de développement des deux modules. PLATO utilisera les 26 caméras pour découvrir et caractériser les exoplanètes qui orbitent autour d'étoiles similaires à notre Soleil.
Le fond cosmologique de neutrinos est une des prédictions du modèle cosmologique standard, mais il n'a jamais été observé directement. Ces neutrinos, dits « reliques », pourraient être capturés sur un noyau radioactif comme le tritium. Le taux de capture qui en résulte dépend de la densité locale de neutrinos reliques. Puisque les neutrinos massifs se laissent happer par le potentiel gravitationnel de notre galaxie et se regroupent localement, une modeste surdensité locale de neutrinos reliques devrait exister sur Terre. Des considérations plus exotiques pourraient conduire à des surdensités plus conséquentes. L'expérience KATRIN a publié en juin 2022 dans Physical Review Letters sa première recherche de neutrinos reliques basée sur l’analyse des données enregistrées en 2019. L’analyse, menée par un physicien de l’Irfu, améliore de deux ordres de grandeur les limites précédentes.
La collaboration KATRIN a tout récemment fait état d'une nouvelle limite supérieure de 0,8 eV/c2 sur la masse des neutrinos. Le spectromètre KATRIN présente en outre un fort potentiel pour la recherche d'éventuels nouveaux neutrinos, dits "stériles", sur la base d'une analyse fine du spectre de désintégration bêta du tritium. La collaboration vient de publier ses nouveaux résultats dans Physical Review D sur la base des deux premières campagnes de données acquises en 2019. Ces travaux ne dévoilent pas de trace de la manifestation d’un quatrième neutrino, et KATRIN pourrait bien être un acteur de premier plan pour clarifier les anomalies observées par certaines expériences d'oscillation de neutrinos depuis une vingtaine d’années.
L'expérience KATRIN (KArlsruhe TRItium Neutrino Experiment) située à l'Institut de technologie de Karlsruhe (KIT) vient de franchir un seuil symbolique. Dans un article publié dans la prestigieuse revue Nature Physics, la collaboration révèle une nouvelle limite supérieure de 0,8 eV/c2 pour la masse des neutrinos. Ce résultat, publié dans Nature Physics, revêt un intérêt fondamental tant pour la physique des particules que pour la cosmologie.
Les neutrinos sont les particules massives les plus abondantes de l'univers. Vestiges du Big-Bang ou de la combustion du cœur des étoiles, ils sont aussi produits dans certaines désintégrations radioactives, comme celle du tritium, un isotope instable de l'hydrogène.
À l'échelle cosmologique, ces poids plumes de l'univers jouent un rôle capital dans la répartition des galaxies. Dans le domaine de l’infiniment petit, l’origine de la masse des neutrinos reste encore inexpliquée par la théorie et pourrait être un élément clé pour dévoiler une nouvelle physique au-delà du modèle standard.
La détermination de la masse infime des neutrinos est donc une préoccupation majeure de la physique des particules, de l'astrophysique et de la cosmologie depuis des décennies.
Les équipes de l’Irfu sont engagées depuis plusieurs décennies dans une longue quête consistant à étudier le neutrino sous toutes ses facettes, pour comprendre la place qu’il tient au sein du modèle standard de la physique des particules voire au-delà, mais aussi son rôle dans l’évolution de l’Univers depuis ses premiers instants. Les traditionnelles conférences d’été ont été l’occasion de mesurer les progrès réalisés par l’armada d’expériences d’envergure internationale avec laquelle notre institut navigue pour atteindre cet ultime but. Retour sur une année 2021 riche en enseignements et en promesses…
Dans le cadre des activités de soutien à la science de Solar Orbiter et en conjonction avec la bourse ERC Synergy WholeSun, des chercheurs du CEA Paris-Saclay, ainsi qu'une collaboration internationale, ont développé des simulations numériques avancées pour étudier la formation de structures à la base du vent solaire. Ces simulations permettent d´étudier l'interaction de la convection à la surface solaire avec le champ magnétique. Elles révèlent ainsi l’apparation de structures magnétiques torsadées qui peuvent participer à la création de switchbacks.
L'instrument spectroscopique pour l'énergie noire (DESI) a terminé ses sept premiers mois d’observations en battant tous les records de relevé 3D de galaxies, créant ainsi la carte de l'Univers la plus grande et la plus détaillée jamais réalisée. Pourtant, l’instrument n'a accompli qu'un peu plus de 10 % de son relevé de cinq ans. Au terme de sa mission, la carte 3D produite par DESI permettra de mieux comprendre l'énergie sombre et, par conséquent, le passé mais aussi l'avenir de l'Univers. Les scientifiques de DESI ont présenté les performances de l'instrument et leurs premiers résultats lors d'un webinaire du 13 janvier (lien de lenregistrement à venir).
Neuf mois après son lancement, le télescope spatial James Webb fournit des images inédites d’une exoplanète, les premières jamais obtenues dans l’infrarouge moyen. Ce type d’images doit révolutionner notre connaissance des mondes extrasolaires. Une équipe d’astronomes français a été impliquée dans les observations de cette planète et dans la conception des coronographes du télescope.
Lancé le 25 décembre 2021, le James Webb a terminé sa phase de tests en Juillet 2022. Les programmes scientifiques ont depuis débuté et produisent déjà leurs premiers résultats, dont la première image d’une exoplanète obtenue dans l’infrarouge moyen, HIP 65426 b. Il s’agit d’une exoplanète géante très jeune, d’environ 15 millions d’années, située à 90 unités astronomiques de son étoile. D’une masse estimée à environ 7 masses de Jupiter, elle avait été découverte avec l’instrument européen Sphere au Very Large Telescope en 2017. Les instruments du James Webb rendent désormais possible son observation directe dans l’infrarouge.
L'aube d'une nouvelle ère de l'astronomie a commencé alors que le monde découvre pour la première fois l'ensemble des capacités du télescope spatial James Webb de la NASA/ESA/CSA. Les premières images en couleur et les premières données spectroscopiques du télescope, qui révèlent un ensemble spectaculaire de caractéristiques cosmiques jusqu'alors insaisissables, ont été publiées le 12 juillet 2022.
Le 28 au soir, on pouvait lire sur le blog de la NASA: "C'est officiel, l'alignement du télescope spatial James Webb de la NASA est maintenant terminé"!
Dire que tous les instruments du télescope spatial James Webb sont parfaitement alignés, signifie que les optiques des intruments et du miroir primaire sont bien reglées. Les images sont déjà époustouflantes alors que la phase de réglage de tous les élements du télescope n'est pas encore terminée.
Pour ce test, le telescope Webb a pointé vers une partie du Grand Nuage de Magellan fournissant un champ dense de centaines de milliers d'étoiles sur tous les capteurs des instruments. Les trois instruments d'imagerie de Webb sont NIRCam (images ci dessous à une longueur d'onde de 2 microns), NIRISS (image à 1,5 micron) et MIRI (image à 7,7 microns). MIRI détecte la lumière dans une plage d’énergie inférieure (ou longueur d'onde plus grande) à celle des autres instruments, révélant l'émission des nuages interstellaires ainsi que la lumière des étoiles.
Ces images sont utilisées pour évaluer la netteté de l'image, mais aussi pour mesurer et étalonner avec précision les distorsions subtiles de l'image et les alignements entre les capteurs de l'instrument dans le cadre du processus d'étalonnage global de l'instrument Webb.
Le DPhN en collaboration avec le Département d'étude des réacteurs de la DES Cadarache et l'Institut de physique nucléaire et des particules de l'université Charles de Prague (Tchéquie) a étudié les propriétés des rayons gamma émis par les isotopes de l'uranium lors de réactions de capture de neutrons. Les spectres gamma mesurés auprès de l'installation n_TOF du CERN ont servi de banc de test des modèles de réactions nucléaires et de leurs ingrédients, notamment la fonction force radiative qui caractérise la capacité d'un noyau à émettre ou absorber des photons. Ce travail a permis une modélisation cohérente des fonctions forces radiatives de la chaîne isotopique de l'uranium (234U, 236U, 238U) et a confirmé la présence d'un mode d'oscillation particulier de la forme du noyau à basse énergie d'excitation. Cette étude a été réalisée dans le cadre de la thèse de doctorat de Javier Moreno-Soto [1] et les résultats complets sont publiés dans Physical Review C [2].
Le LINAC SPIRAL2 a produit avec succès le 16 septembre dernier son premier faisceau d’oxygène. Après les protons fin 2019 et les deutons en 2021, l’accélérateur linéaire du GANIL fait ainsi ses premiers pas dans l’accélération d’ions lourds produits par la source PHOENIX_V3. Un développement essentiel pour le programme scientifique à venir auprès du spectromètre S3 actuellement en cours d’installation.
La première mesure des corrélations de courte portée (SRC) dans un noyau exotique a eu lieu en mai 2022 avec l'instrument Cocotier installé à GSI à Darmstadt, en Allemagne. Cette expérience est une étape cruciale dans le programme qui a débuté en 2017 avec un financement de l'Agence Nationale de la Recherche qui a permis aux physiciens de construire une cible d'hydrogène liquide (voir FM précédent). L'objectif de cette expérience est de tester l'hypothèse que les nucléons peuvent former des paires compactes, les paires SRC. Cette campagne de mesure a permis de recueillir des données expérimentales pendant environ 60 heures avec un faisceau de 16C puis avec un faisceau 12C durant une quarantaine d’heures supplémentaires afin d'avoir une mesure de référence avec un faisceau stable bien étudié. L'équipe de l'Irfu a joué un rôle majeur dans la préparation et le déroulement de cette expérience, et est maintenant en charge de l'analyse des données avec le MIT, TU Darmstadt et l'équipe du LIP Lisbonne.