Des chercheurs du Laboratoire d'Étude des Phénomènes Cosmiques de Haute Énergie et des experts en simulations numériques du groupe COAST, ont réalisé le couplage entre un code hydrodynamique 3D et un modèle d'accélération de particules, permettant pour la première fois d'étudier de façon réaliste les signatures morphologiques des protons accélérés par l'onde de choc d'un reste de supernova, en fonction de l'efficacité du mécanisme d'accélération, et en prenant en compte des instabilités qui affectent la zone choquée.
Une équipe internationale d’astronomes, comprenant plusieurs chercheurs français, vient de mesurer l’éloignement exact de cinq galaxies très lointaines, grâce à l'observatoire spatial Herschel de l'ESA et à des observations au sol, impliquant notamment l’interféromètre de l’Institut de radioastronomie millimétrique1 . Les chercheurs ont ainsi démontré que la lumière de ces galaxies avait dû voyager pendant environ dix milliards d'années avant de nous atteindre. Pour parvenir à ces résultats, ils ont tout d’abord mis au point une nouvelle méthode qui utilise, pour la première fois dans le domaine submillimétrique2 , un phénomène appelé « lentille gravitationnelle », sorte de loupe cosmique que détecte Herschel. Difficiles à observer jusqu’à aujourd’hui, ces galaxies lointaines en cours d’évolution rapide constituent l’une des clés pour mieux comprendre l’histoire des galaxies dans notre Univers. Ces résultats sont publiés dans la revue Science du 5 novembre 2010.
Le trou noir central de la Galaxie, aujourd'hui étonnamment calme, a connu il y a plusieurs centaines d'années un violent regain d'activité. C'est en étudiant l'émission à haute énergie des nuages moléculaires situés dans les régions centrales de la Galaxie, qu'une équipe internationale dirigée par des astrophysiciens du laboratoire APC et incluant des chercheurs du Service d'Astrophysique du CEA-Irfu est arrivée à cette conclusion. Les chercheurs ont découvert des variations étonnantes, dont certaines semblent se propager par un effet d'optique à une vitesse supérieure à la vitesse de la lumière. Elles révèlent une éruption géante amorcée il y a environ 400 ans. Le puissant sursaut est visible aujourd'hui après sa réflexion sur des nuages moléculaires qui jouent le rôle de miroirs célestes. L'histoire récente ainsi retracée montre que le trou noir du centre galactique n'est pas aussi éloigné de la famille des trous noirs supermassifs des noyaux actifs de galaxies. Ces travaux, basés sur deux programmes à long terme sur les satellites XMM-Newton et Integral, font l'objet de deux publications complémentaires dans la revue The Astrophysical Journal.
Le satellite Planck vient de découvrir un superamas de galaxies grâce à son empreinte sur le rayonnement fossile, témoin des premiers instants de l’Univers. Il s’agit d’une première pour le satellite, qui a également révélé, avec une extrême précision, de nouveaux amas de galaxies.
Ces objets, qui abritent des centaines voire des milliers de galaxies, sont les plus grandes structures connues de l’Univers. Grâce à ces données, les scientifiques espèrent mieux comprendre comment la matière noire et la matière visible se rassemblent sous la forme de telles structures.
Après son lancement le 14 mai 2009, le satellite Planck [1] observe en continu la voûte céleste et cartographie l'ensemble du ciel depuis le 13 août, pour obtenir la première image à très haute résolution de l'aube de l'Univers. Le satellite Planck vient de terminer son premier tour de ciel. Les premières images révèlent des détails insoupçonnés sur l'émission de gaz et de poussières dans notre propre galaxie. Des scientifiques du CEA-Irfu, au sein d'une large collaboration internationale, travaillent actuellement sur l'extraction et l'exploitation des catalogues d'objets détectés par Planck. Ces catalogues intermédiaires sont indispensables pour comprendre et soustraire les émissions parasites en avant plan de la lumière de fond de l'univers, trace fossile de ses premiers âges. Ils permettent également de mieux comprendre la formation des plus grandes structures de l'univers, les amas de galaxies. Les premiers catalogues devraient être publiés en janvier 2011. En revanche, les publications scientifiques définitives sur la première lumière de l'Univers ne devraient intervenir que vers la fin 2012.
Le trou noir central de la Galaxie, aujourd'hui étonnamment calme, a connu il y a plusieurs centaines d'années un violent regain d'activité. C'est en étudiant l'émission à haute énergie des nuages moléculaires situés dans les régions centrales de la Galaxie, qu'une équipe internationale dirigée par des astrophysiciens du laboratoire APC et incluant des chercheurs du Service d'Astrophysique du CEA-Irfu est arrivée à cette conclusion. Les chercheurs ont découvert des variations étonnantes, dont certaines semblent se propager par un effet d'optique à une vitesse supérieure à la vitesse de la lumière. Elles révèlent une éruption géante amorcée il y a environ 400 ans. Le puissant sursaut est visible aujourd'hui après sa réflexion sur des nuages moléculaires qui jouent le rôle de miroirs célestes. L'histoire récente ainsi retracée montre que le trou noir du centre galactique n'est pas aussi éloigné de la famille des trous noirs supermassifs des noyaux actifs de galaxies. Ces travaux, basés sur deux programmes à long terme sur les satellites XMM-Newton et Integral, font l'objet de deux publications complémentaires dans la revue The Astrophysical Journal.