20 janvier 2009

AGATA (Advanced Gamma Tracking Array) est un instrument de nouvelle génération pour l'étude des noyaux par spectroscopie gamma. Ce spectromètre se composera de 180 détecteurs de germanium de très grande pureté. La collaboration AGATA rassemble environ 40 instituts européens. L'Irfu y joue un rôle clef dans la définition des programmes de physique, la construction du spectromètre et de l'électronique associée. Les services d'instrumentation de l'Irfu ont proposé pour ce projet une solution innovante pour le refroidissement des détecteurs et ont développé des modules de basse et de haute tension. Une chaîne de validation des détecteurs a été mise en place au sein de l'Irfu.  D'importants jalons de ces développements ont été validés ces derniers mois.

21 janvier 2009

Une gestion efficace des colis de déchets nucléaires est conditionnée par l'identification et la quantification des matières nucléaires qu'ils contiennent. Au CEA des méthodes non destructives de caractérisation de ces colis sont mises au point afin de les classifier et les orienter vers le stockage adéquat. Les mesures passives qui consistent à mesurer les radiations émises naturellement sont insuffisantes car le contenu, nucléaire et autre, du colis joue le rôle d'un blindage. A contrario, l'irradiation par photon pourrait permettre de quantifier et d'identifier le contenu en actinides (éléments dont le numéro atomique est supérieur à 89) d'un colis. Depuis quelques années, une équipe du Service de physique nucléaire de l'Irfu, dans le cadre du projet PhotoNuc, mesure les caractéristiques de l'émission des neutrons et gamma retardés émis par les fragments issus de la fission induite par photon (photofission) des actinides. Ces données sont essentielles à l'optimisation d'un dispositif visant à trier un nombre important de fûts de déchets. Les résultats pour les gamma retardés ont fait l'objet d'une communication à la conférence PHYSOR081 et ont été sélectionnés pour publication rapide dans Annals of Nuclear Energy.  

28 mai 2009

Le spectromètre à muons du détecteur ALICE1 a enregistré des rayons cosmiques pendant deux semaines fin mars 2009. Le groupe ALICE de Saclay2 s'est beaucoup impliqué dans la conception, la mise au point, la fabrication et l'installation d'une partie des chambres qui constituent ce spectromètre3. Ce test réalisé à l'aide des rayons cosmiques avait pour but de vérifier le bon fonctionnement de la chaîne complète depuis l'acquisition jusqu'à la reconstruction des données.  Au total un million de canaux environ ont été lus par le système d'acquisition et les données ont été enregistrées sur la grille de calcul. Près de 15000 traces ont été reconstruites dans des conditions proches de l'expérience avec du faisceau. Le test cosmique a été un succès. Il a montré que les chambres du spectromètre ont un comportement stable. Il a aussi permis de mettre en évidence certains points faibles de l'appareillage. Les tests se poursuivent actuellement et permettront de procéder à la correction des défauts observés. 

Un test cosmique impliquant tous les détecteurs d'ALICE est prévu au mois d'août, quelques semaines avant les premières injections de faisceau du LHC.

 

La quête d'ALICE:

 

Alice est l'expérience du LHC dédiée à l'étude du Plasma de Quarks et de Gluons (QGP), un état de la matière où les quarks et les gluons, ne sont plus confinés à l'intérieur des protons et neutrons. Cette soupe primordiale aurait existé dans les premières microsecondes de la naissance de l'univers. Au CERN, elle sera produite lors des collisions d'ions plomb à haute énergie. Le spectromètre à muons d'ALICE détectera les muons venant des résonances J/Psi et Upsilon des premiers faisceaux du LHC. La suppression de telles résonances a été annoncée comme une signature du QGP. 

 

Le spectromètre à muons:

Son rôle est de détecter des paires μ+ / μ- issues des désintégrations des résonances J/Psi et Upsilon, signatures les plus prometteuses de la création du plasma quark-gluon. Le spectromètre (figure 1), qui couvre une ouverture angulaire entre 2 et 9 degrès, est constitué : d'un absorbeur, de 5 stations de trajectographie (1-5), avec la troisième station se trouvant à l'intérieur du Dipole chaud, un mur de feret des chambres de déclenchement. Chaque station inclue 2 plans de cathodes faits de damiers de différentes tailles en x et y (différentes granularités).

11 septembre 2009

Depuis le 23 Avril 2009, le MSS (Magnet Safety System) est opérationnel au J-PARC (Japan Proton Accelerator Research Complex, Tokaï, Japon).

  

Le MSS, conçu et réalisé par l'Irfu / SIS, protège 28 aimants supraconducteurs à fonctions combinées (dipôles et quadripôles). Ces aimants, parcourus par un courant de 4400 A, courbent un faisceau de protons selon un arc de 90 degrés, dans un tunnel de 150 m de long. Les protons sont destinés à produire des neutrinos envoyés vers le détecteur Super-Kamiokande, à 295 km à l'ouest de Tokai, en passant sous la surface de la terre.

  

En plus de ces 28 aimants, le MSS protège également 6 aimants de correction supraconducteurs (courant maximum = +/- 50 A).

  

Lorsque le MSS détecte une transition des aimants (un quench) ou un défaut sur leur circuit électrique, il commande la diminution du courant et la décharge de l'énergie stockée dans les bobines. Il empêche aussi les protons d'entrer dans la ligne de faisceau de T2K, dans un délai de 10 millisecondes.

03 septembre 2009

 

Les équipes d'ingénieurs et de physiciens de l'Irfu ont réussi l'intégration de deux grandes chambres, permettant de reconstruire les traces de particules chargées. Ces chambres caractériseront le faisceau de neutrinos de l'expérience T2K (Tokai to Kamiokande). Ce sont les premières grandes chambres TPC équipées de détecteurs de type micro-structure (Micromegas). La surface de détection de l'ensemble est très importante (presque 9m²) et le nombre de canaux d'électronique en proportion (124000). L'Irfu a réalisé l'ensemble du système de détection des trois grandes chambres à échantillonnage temporel (TPC), comprenant 72 détecteurs Micromegas et toute l'électronique frontale. Une nouvelle puce (AFTER) et deux cartes électroniques, permettant de transmettre au système d'acquisition les signaux numérisés à travers un ensemble de 72 liens optiques gigabit ont été spécialement conçues par les ingénieurs du SEDI (service d'Electronique des Détecteurs et d'Informatique). Avant leur installation au Japon dès cet  automne, les deux chambres ont été testées, à TRIUMF (Canada), en février et juin. 

 

 

Les premiers tests en faisceau et avec des rayons cosmiques ont permis de reconstruire des traces avec la précision de l'information attendue. Il s'agit d'un jalon important dans la réalisation d'un détecteur clé pour l'expérience T2K.

02 juin 2009

La deuxième phase de l'expérience internationale Double Chooz a été officiellement lancée, mercredi 20 mai. La déclaration d'intention signée par les quatre partenaires (CEA, CNRS, EDF, région Champagne-Ardenne) est le premier pas essentiel vers la construction du second détecteur consacré aux recherches sur les neutrinos, auprès de la centrale nucléaire de Chooz.

Les participants avaient auparavant visité le site du premier détecteur, actuellement en construction. Il devrait détecter les premiers neutrinos issus de la centrale dès la fin de l'année et cherchera à mesurer une disparition de neutrinos issus du flux primaire.  Le second détecteur sera en opération dans deux ans. Il mesurera précisément le flux et le spectre en énergie des neutrinos émis et conduira à une importante amélioration du contrôle et de la précision des mesures.

17 avril 2009

Voilà maintenant plus de deux ans qu'Antares 1, télescope sous-marin immergé à 2500 mètres dans les abysses méditerranéens, scrute le ciel au travers de la Terre en détectant des neutrinos. Aujourd'hui plus d'un millier d'entre eux ont déjà été observés, permettant de dresser les premières vues du ciel et d'y rechercher des neutrinos cosmiques très énergétiques, témoins des phénomènes les plus violents de l'Univers.

 

 

Les neutrinos sont des particules qui interagissent très peu avec la matière. Émis dans les cataclysmes les plus violents de l'Univers, ils pourraient permettre de prouver que ces phénomènes sont à l'origine du rayonnement cosmique, essentiellement des protons, qui bombardent la Terre en permanence. Ces protons nous parviennent en effet déviés par les champs magnétiques intergalactiques, nous empêchant de déterminer leur origine.

 

La détection des neutrinos est un défi qu'il n'est possible de relever qu'avec d'immenses détecteurs, protégés de ce même rayonnement cosmique. Antares, installé au large de Toulon, s'en protège grâce à un blindage naturel de 2000 mètres d'eau. Le déploiement du détecteur, qui a duré deux ans, s'est achevé en mai 2008. Aujourd'hui 885 « yeux », leur électronique de lecture et de traitement des données, - imaginés et construits à CEA-Irfu - s'égrènent par groupe de trois le long de 12 lignes souples de 450 mètres de haut. Ces lignes, plus hautes que la tour Eiffel, sont ancrées aux fonds marins sur un espace équivalent à 4 terrains de football.

 

Retour en haut