13 juin 2014
COMMUNIQUÉ DE PRESSE NATIONAL I PARIS I 6 JUIN 2014

AGATA, détecteur de rayonnement  gamma, vient de rejoindre le Grand accélérateur national d’ions lourds (Ganil, CNRS/CEA). Après des séjours en Italie et en Allemagne, il s’installe en France pour une campagne de mesures de deux ans au moins, dans le cadre d’un programme scientifique dédié à l’étude de la structure des noyaux atomiques. Le CNRS et le CEA ont été fortement impliqués dans la construction d’AGATA qui constitue une avancée technologique majeure par rapport aux anciens détecteurs : il permet de reconstruire la trajectoire des photons qui le traversent. À partir de 2015, ce sont plusieurs dizaines d’équipes de physiciens venant de toute l’Europe qui se succéderont au Ganil afin de réaliser leurs expériences avec ce détecteur ultra-perfectionné.

 

AGATA1 est basé sur la technique dite du « tracking », qui permet  d’identifier chaque point d’impact d’un photon lorsqu’il traverse le détecteur, ceci afin de suivre son parcours de façon précise et ainsi augmenter la sensibilité des mesures. Ces photons de grande énergie sont détectés par les « yeux » d’AGATA.  Appelés capsules, ils sont constitués de mono-cristaux de germanium dont la pureté quasi-parfaite est garante de la qualité des mesures. Ces cristaux composent la base du système de détection. Ils absorbent les photons qui traversent le détecteur et convertissent leur énergie avec une précision inégalée en signal électrique.

Actuellement le système de détection d’AGATA est composé de 23 cristaux de germanium pur. En 2015, au Ganil, il en comptera au minimum 32, offrant une amélioration d’un facteur 10 de la sensibilité de détection du rayonnement gamma émis par des noyaux exotiques. L’ambition du projet est de réunir à terme 180 cristaux couvrant une sphère complète de 362 kg de germanium hyper-pur.

Le programme scientifique d’AGATA au Ganil est l’étude de la structure des noyaux atomiques par spectroscopie gamma de haute résolution. Les travaux porteront sur les noyaux proches des isotopes dits « doublement magiques », piliers de notre compréhension de la matière nucléaire. L’organisation particulière des protons et des neutrons au sein de ces noyaux et leur plus grande stabilité intéressent notamment les chercheurs. Les données obtenues seront utilisées pour contraindre les modèles théoriques décrivant l’interaction nucléaire entre les nucléons (protons et neutrons) dans le noyau. Ces modèles permettront de comprendre l’origine et l’abondance de la matière nucléaire dans l’Univers. 

 

 

24 septembre 2014
COMMUNIQUÉ DE PRESSE NATIONAL I PARIS I 25 SEPTEMBRE 2014

Un second détecteur de neutrinos vient d’être édifié par le CNRS et le CEA à proximité de la centrale nucléaire de Chooz (Ardennes). Ses mesures complèteront celles du premier détecteur, installé depuis cinq ans, afin d’étudier, dans le cadre de l’expérience Double Chooz, les caractéristiques des neutrinos, ces particules élémentaires presque insaisissables produites en abondance notamment dans le Soleil et dans les réacteurs nucléaires. Construit à 400 mètres du cœur des réacteurs de la centrale, ce second détecteur est inauguré le 25 septembre 2014 en présence de représentants du CNRS et du CEA, et des autorités locales, qui soutiennent activement cette implantation.

 

Après sa mise en service au cours de l’automne, le détecteur captera les neutrinos produits dans les cœurs des deux réacteurs de la centrale, situés à 400 mètres. Ces données seront comparées à celles collectées par l’autre détecteur, installé à 1 kilomètre de ces réacteurs. La différence de composition attendue est due à une métamorphose des neutrinos, qui changent de caractéristiques au cours de leur trajet. L’expérience Double Chooz est fondamentale pour permettre de comprendre ce phénomène, et ainsi compléter le Modèle standard de la physique des particules1.

 

 

08 juin 2014

L’intégration de la mécanique du cœur du détecteur proche de Double-Chooz est terminée. Les trois enceintes sur les quatre que comprend le détecteur ont été fermées fin juin par les équipes de l’Irfu. Le détecteur est prêt pour son remplissage, pour un début de prise de donnée cet automne.

 

 

L’expérience Double-Chooz étudie précisément les oscillations de neutrinos par la mesure de l’angle de mélange θ13 caractérisant la transformation spontanée des antineutrinos électroniques provenant des réacteurs nucléaires de la centrale de Chooz dans les Ardennes.

Le premier détecteur, situé à 1 km des réacteurs, est actuellement en prise de données depuis le mois d’avril 2011. Ce détecteur a permis la première mesure de l’angle de mélange θ13 auprès d’un réacteur nucléaire en 2011. Cette mesure a été complétée et précisée depuis par des expériences similaires en Chine et en Corée. Récemment la collaboration Double Chooz vient d’améliorer sa détermination, sin2 2θ13 = 0.090 +- 0.03, dans une publication à paraître. Ces mesures ont par ailleurs permis de découvrir une nouvelle structure dans le spectre des neutrinos de réacteurs. Cette structure, révélée pour la première fois lors de la conférence Neutrino 2014 à Boston, agite la communauté des physiciens qui en cherche l’origine mystérieuse.

04 septembre 2014

La procédure et les outillages d’assemblage des tronçons de la cavité RFQ du projet Spiral2 ont été validés à Saclay. Les deux tronçons ont été assemblés avec succès, permettant ainsi de valider l’obtention de la précision drastique requise pour les aligner ainsi que le niveau d’étanchéité necessaire pour y faire régner l’ultra vide. Les tronçons ont été démontés et sont prêts à être expédiés au GANIL où le montage final va débuter le 8 septembre.

 

Rôle d’une cavité accélératrice RFQ

L’Irfu a en charge les études, la réalisation, le montage et la mise en service au GANIL de la cavité accélératrice RFQ (Radio Frequency Quadrupole) de Spiral2. Cette cavité en cuivre pur est placée à la sortie des lignes « basse énergie » qui conduisent les faisceaux continus issus des sources de particules jusqu’à elle (voir aussi L'injecteur de SPIRAL2 prêt à déménager au Ganil, juillet 2012). Son rôle est de regrouper les particules en paquets (88 millions de paquets par seconde), tout en commençant à les accélérer jusqu’à 3 MeV (et pour une intensité allant jusqu’à 5 mA), afin de pouvoir ensuite les injecter dans l’accélérateur linéaire supraconducteur.

La cavité RFQ est composée de cinq tronçons de cuivre de 1 m de longueur, et pesant 1,6 tonnes chacun. La puissance RF installée nécessaire à son fonctionnement est de 240 kW en continu. La thermalisation de la cavité est assurée par une circulation complexe d’eau à température régulée.

 

 

 

 

Retour en haut