19 mai 2021
Les ingénieurs et physiciens de l’Irfu ainsi que leurs collaborateurs viennent de terminer l’élaboration d’un Sirius moderne, élément clé du super séparateur spectromètre (S3) en cours de construction au Ganil.

Les anciens l’avaient bien compris, les héros, tel Orion avec Sirius, ont besoin de leur fidèle compagnon. Les ingénieurs et physiciens de l’Irfu ainsi que leurs collaborateurs ne dérogent pas à la règle et viennent de terminer l’élaboration d’un Sirius moderne, élément clé du super séparateur spectromètre (S3) en cours de construction au Ganil. Les tests ayant été passés avec brio, le système a pu être déménagé au Ganil pour son installation définitive.

Dans la mythologie grecque, Sirius, le fidèle compagnon à quatre pattes d'Orion, chasseur hors pair, a été transformé en constellation et placé à ses côtés. Ce célèbre canidé a par ailleurs donné son nom à l’étoile la plus brillante du ciel nocturne. Les physiciens de l’Irfu viennent de lui rendre honneur à leur manière cette fois ci dans le monde des détecteurs.

04 juin 2021

Deux instruments de pointe, GLAD et COCOTIER, ont étés conçus et construits à l’Irfu dans les dernières années et sont maintenant opérationnels au sein de la salle expérimentale R3B de l’accélérateur d’ions lourds de GSI (Darmstadt, Allemagne). Les deux sont destinés à faire partie de l’équipement qui sera utilisé auprès de FAIR, la nouvelle machine en construction sur le site de GSI. GLAD est un spectromètre de grande acceptance destiné à l’analyse des réactions de faisceaux d’ions lourds radioactifs relativistes. Il a été installé sur site en 2015 et vu le faisceau pour la première fois à l’automne 2018. Dans certaines expériences, ces faisceaux auront interagi en amont sur la cible d’hydrogène liquide COCOTIER. Celle-ci, financé en partie par l’Agence Nationale de la Recherche, vient d’être utilisée pour la première fois dans une expérience en mars 2021. Ces deux équipements sont deux éléments clefs pour effectuer des mesures des propriétés des noyaux à la limite de la cohésion nucléaire et avec des structures inhabituelles, permettent de faire évoluer les modèles nucléaires actuels.

10 novembre 2021

Les chercheurs de l’Irfu viennent de valider le principe d’une nouvelle méthode de calibration robuste des bolomètres baptisée CRAB [1]. Grâce à elle, les scientifiques vont pouvoir exploiter des événements à la frontière des très basses énergies. Ce projet ouvre un potentiel d’études originales, à la croisée des cultures entre la physique des neutrinos, la recherche de la matière noire et la physique du solide. Les premiers résultats sont attendus avec le déploiement de l’expérience NUCLEUS !

04 juin 2021

Deux instruments de pointe, GLAD et COCOTIER, ont étés conçus et construits à l’Irfu dans les dernières années et sont maintenant opérationnels au sein de la salle expérimentale R3B de l’accélérateur d’ions lourds de GSI (Darmstadt, Allemagne). Les deux sont destinés à faire partie de l’équipement qui sera utilisé auprès de FAIR, la nouvelle machine en construction sur le site de GSI. GLAD est un spectromètre de grande acceptance destiné à l’analyse des réactions de faisceaux d’ions lourds radioactifs relativistes. Il a été installé sur site en 2015 et vu le faisceau pour la première fois à l’automne 2018. Dans certaines expériences, ces faisceaux auront interagi en amont sur la cible d’hydrogène liquide COCOTIER. Celle-ci, financé en partie par l’Agence Nationale de la Recherche, vient d’être utilisée pour la première fois dans une expérience en mars 2021. Ces deux équipements sont deux éléments clefs pour effectuer des mesures des propriétés des noyaux à la limite de la cohésion nucléaire et avec des structures inhabituelles, permettent de faire évoluer les modèles nucléaires actuels.

25 mai 2021

Depuis 2010 la question de la taille du proton est au cœur d’une controverse entre physiciens atomistes et physiciens hadroniques. En effet, des mesures très précises de physique atomique ont conclu à une taille du proton beaucoup plus petite que ce qui était attendu, en très fort désaccord avec les expériences de diffusion élastique. En collaboration avec l'Université de Pérouse, une physicienne de l’Irfu a mené l’enquête pour trouver le responsable d’une telle différence. Les résultats ont été publiés dans European Journal of Physics A [3].

19 mai 2021
Les ingénieurs et physiciens de l’Irfu ainsi que leurs collaborateurs viennent de terminer l’élaboration d’un Sirius moderne, élément clé du super séparateur spectromètre (S3) en cours de construction au Ganil.

Les anciens l’avaient bien compris, les héros, tel Orion avec Sirius, ont besoin de leur fidèle compagnon. Les ingénieurs et physiciens de l’Irfu ainsi que leurs collaborateurs ne dérogent pas à la règle et viennent de terminer l’élaboration d’un Sirius moderne, élément clé du super séparateur spectromètre (S3) en cours de construction au Ganil. Les tests ayant été passés avec brio, le système a pu être déménagé au Ganil pour son installation définitive.

Dans la mythologie grecque, Sirius, le fidèle compagnon à quatre pattes d'Orion, chasseur hors pair, a été transformé en constellation et placé à ses côtés. Ce célèbre canidé a par ailleurs donné son nom à l’étoile la plus brillante du ciel nocturne. Les physiciens de l’Irfu viennent de lui rendre honneur à leur manière cette fois ci dans le monde des détecteurs.

14 avril 2021

Deux noyaux "miroirs", dans lesquels les nombres de neutrons et de protons sont intervertis, ont des formes très différentes, ce qui défie les théories nucléaires actuelles. Ce résultat frappant a été obtenu par des chercheurs de l'Irfu en collaboration avec une équipe internationale et a été récemment publié dans Physics Review Letter [1] et mis en avant comme suggestion de l'éditeur [2].

20 décembre 2021

Les hadrons se révèlent être des particules d’une pudeur inégalée. La communauté scientifique s’attendait à percer les mystères de leur structure tridimensionnelle en termes de quarks et gluons au travers d’un processus expérimental de diffusion Compton. Cependant, une équipe de physiciens de l’Irfu en collaboration avec le centre de recherche nucléaire (NCBJ) de Varsovie, vient de démontrer que ce processus seul ne sera pas suffisant pour mettre en lumière l’organisation spatiale à l’intérieur des hadrons. Ils proposent néanmoins une alternative pour sonder le cœur de ces grands timides en combinant différents processus au lieu d’en exploiter un seul. Les résultats sont publiés dans Physics Review D [1].

24 juin 2021
Les physiciens du DPhN ont joué un rôle décisif dans la première mesure des paires de nucléons à l'aide d'une nouvelle méthode, qui ouvrira la voie à l'étude des interactions à courte portée dans les noyaux radioactifs.

Les nucléons sont des particules sociales. Non seulement ils aiment vivre en communauté à l'intérieur des noyaux, mais ils forment également des couples au sein de ces communautés. En effet, on peut observer des protons et des neutrons formant des paires à l'intérieur des noyaux. Les physiciens du DPhN ont joué un rôle décisif dans la première mesure de ces paires de nucléons à l'aide d'une nouvelle méthode, qui ouvrira la voie à l'étude de ces interactions étroites (ou à courte portée) dans les noyaux radioactifs. Les résultats ont récemment été publiés dans Nature Physics [Pat21]. L'étude de ces paires de nucléons dans les noyaux radioactifs est l'objectif du projet ANR COCOTIER dirigé par l'Irfu.

Comprendre comment l'interaction nucléaire émerge des constituants de base de la matière est l'un des défis de la physique contemporaine. L'interaction nucléaire entre les nucléons (proton ou neutron) est considérée comme une manifestation de la force forte entre quarks, à travers l'échange de gluons qui maintiennent les nucléons ensemble. Malgré les efforts déployés depuis longtemps, il n'existe pas encore d'interaction nucléaire unifiée permettant de prédire les propriétés de tous les noyaux.

 

Retour en haut