2 sujets /DPhN/LENA

Dernière mise à jour :


 

Coexistence de formes dans les noyaux de selenium étudiée avec le spectromètre AGATA

SL-DRF-23-0034

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire études du noyau atomique (LENA) (LENA)

Saclay

Contact :

Magdalena Zielinska

Wolfram KORTEN

Date souhaitée pour le début de la thèse : 01-10-2022

Contact :

Magdalena Zielinska
CEA - DRF/IRFU/DPhN/LENA

01 69 08 74 86

Directeur de thèse :

Wolfram KORTEN
CEA - DRF/IRFU/DPhN/LENA

+33169084272

Labo : http://irfu.cea.fr/Sphn/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=483

L’étude des noyaux atomiques dits 'déformés' ayant une distribution de charge non sphérique est essentielle pour tester les interactions nucléaires et les modèles de structure du noyau. La quasi-totalité de ces noyaux ont une forme intrinsèque prolate (allongée) et très peu sont de forme oblate (aplatie). Un très faible nombre de noyaux présente une coexistence de formes (par exemple prolate-oblate), phénomène autorisé par la nature quantique du noyau atomique. Un des thèmes de recherche du groupe de structure du noyau du DPhN (Departement de Physique Nucléaire) est de chercher ces noyaux au sein de la carte de Segrè afin de les étudier et d’en caractériser la forme.



AGATA, le multi-détecteur de dernière génération pour le rayonnement gamma, vient d’être installé aux laboratories nationaux de Legnaro (Italie) et permettra de faire un grand pas dans la connaissance de la spectroscopie des noyaux de plus en plus éloignés de la vallée de la stabilité. Notre groupe est fortement impliquée dans l’exploitation de ce détecteur notamment avec des expériences sur la coexistence de formes.

RECHERCHE DE LA DÉSINTÉGRATION NUCLÉAIRE EN DEUX PHOTONS

SL-DRF-23-0033

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire études du noyau atomique (LENA) (LENA)

Saclay

Contact :

Wolfram KORTEN

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Wolfram KORTEN
CEA - DRF/IRFU/DPhN/LENA

+33169084272

Directeur de thèse :

Wolfram KORTEN
CEA - DRF/IRFU/DPhN/LENA

+33169084272

Page perso : https://www.researchgate.net/profile/Wolfram_Korten

Labo : http://irfu.cea.fr/dphn/Phocea/Vie_des_labos/Ast/ast_sstheme.php?id_ast=293

Voir aussi : https://www.gsi.de/en/work/research/appamml/atomic_physics/experimental_facilities/esr.htm

La désexcitation nucléaire en deux photons, c.à.d. la décroissance par émission de deux rayons gamma, est un mode de désexcitation rare du noyau atomique, au cours duquel un noyau excité émet deux rayons gamma simultanément pour revenir à l’état fondamental. Les noyaux pair-pair ayant un premier état excité 0+ sont des cas favorables pour rechercher la décroissance double gamma puisque l’émission d’un seul rayon gamma est strictement interdite pour les transitions 0+ -> 0+ par conservation du moment angulaire. Cette décroissance présente toujours un très petit rapport d’embranchement (<1E-4) en comparaison avec les autres modes de désexcitation possibles, soit par l’émission d’électrons de conversion interne (ICE) soit la création de paires positron-électron (e+-e-) (IPC). Nous utiliserons donc une nouvelle technique pour rechercher la décroissance double gamma: l’étude de la désexcitation d’un état isomérique 0+ de basse énergie dans les ions nus, c.-à-d. entièrement épluchés de leurs électrons atomiques. L’idée de base de l’expérience est de produire, sélectionner et stocker les noyaux dans leur état isomérique 0+ dans l’anneau de stockage de l’installation GSI en Allemagne. Lorsque le noyau est entouré du cortège électronique l’état 0+ excité est un état isomérique à durée de vie assez courte, de l’ordre de quelques dizaines à quelques centaines de nanosecondes. Toutefois, aux énergies relativistes disponibles à GSI, tous les ions sont entièrement épluchés de leurs électrons atomiques et la désexcitation par ICE n’est donc pas possible. Si l’état d’intérêt est situé en dessous du seuil de création de paires, le processus IPC n’est pas possible non plus. Par conséquent, les noyaux nus sont piégés dans un état isomérique de longue durée de vie, qui ne peut se désintégrer que par émission de deux rayons gamma vers l’état fondamental. La désexcitation de l’isomère serait identifiée par spectroscopie de masse Schottky (SMS) à résolution temporelle. Cette méthode permet de distinguer l’isomère de l’état fondamental par la (très légère) différence de leur temps de révolution dans l’ESR, et d’observer la disparition du pic de l’isomère dans le spectre de masse avec un temps de décroissance caractéristique. Après une première expérience réussie qui a fait preuve de la décroissance double gamma dans l'isotope 72Ge une nouvelle expérience a été accepté par le comité d’expériences de GSI et son réalisation est prévu début 2024.

• Physique nucléaire

 

Retour en haut