In the field of medical imaging, a IRFU team has launched a challenge: their goal is to image the brain activity with a precision of 1 mm3. Its name: CaLIPSO. The idea consists in an innovative detector technology: both light and ionisation signals produced by particle interactions are detected. For this, a series of technological obstacles must be overcome. One of these crucial steps has just succeeded. It consists in implementing the entire chain of ultra-purification of the detection liquid.
The LHC's Atlas collaboration at Cern has observed a rare process: the production of Higgs bosons in association with a top quark and top antiquark pair. This work, supervised by an Irfu researcher, opens up perspectives on the study of the Higgs mechanism that gives mass to particles.
Data collected at the LHC (Cern) were processed to provide the most accurate assessment of an asymmetry in top quark and top antiquark production. The result is that the measured value is compatible with the prediction of the standard particle model.
Physicists from IRFU have announced that no "big brother" of the Higgs boson has been detected at the ATLAS experiment at CERN's LHC. Their results rely on new analyzes with higher sensitivity.
Light-by-light scattering, predicted in 1936, was observed for the first time by the ATLAS experiment at the LHC, thanks to "ultra-peripheral" collisions of lead ions. It is of particular interest to physicists, as it is the result of interactions between a vacuum and intense electromagnetic fields.
Several decades after its discovery, dark matter remains enigmatic. Researchers from IRFU have tested three models of dark matter in which the formation of large structures was modeled using supercomputing. The reconstruction of large structures from observations of quasar spectra favors the hypothesis of a standard "cold" dark matter and sets some of the strongest constraints on these invisible masses.
An international team from the Sloan Digital Sky Survey (SDSS) has carried out the first large-scale spectroscopic analysis of quasars, and was able to create a full 3D map of the universe and its large structures as it was 6 billion years ago. For now, the standard model of Cosmology, based upon Einstein's general theory of relativity, is confirmed.
The Dark Energy Spectroscopic Instrument (Desi) will analyze the light emitted by 35 million galaxies and quasars at various times in the past of the Universe and up to 11 billion years to better understand dark energy. Its move into the construction phase in 2016 crowns several years of research and development that have resulted in a solid design and a credible observation strategy. Irfu, a partner in the project from the outset, has played a key role. A look back at a year that saw the project become a reality.
For more than 10 years now, Irfu physicists and engineers have been developing in Saclay the necessary equipment for the GBAR experiment, designed to test the behaviour of antimatter under terrestrial gravity. An important step has just been taken with the installation at the Cern of a new positron source using on an electron linac, and the transport to the Cern of the positron trapping system built at Saclay.
The new source produced its first positrons on November 17, 2017. The installation of the traps is in progress, to be operational when the antiprotons arrive, scheduled for spring 2018.
The data collected between 2010 and 2017 by the T2K collaboration (Tokai To Kamiokande) and the reactor neutrino experiments strengthens the trend announced a year ago—neutrinos and antineutrinos have seemingly different behavior.
The new-generation liquid argon detector used in the WA105 experiment at CERN has collected its first signals. This prototype is used in preparation of the Deep Underground Neutrino Experiment (DUNE) for neutrino observations on a mass scale, which is due to start in 2026 in the USA. This research involving IRFU aims, in particular, to shed light on the origin of matter and antimatter.
After four years of study, the Luminescent Underground Molybdenum Investigation for Neutrino mass and nature (LUMINEU) collaboration has selected lithium molybdate for the manufacture of scintillating bolometers. These ultrasensitive particle detectors will be used for neutrinoless double-beta-decay searches. Should evidence of the latter be highlighted, neutrinos would merge with their antiparticle and the absolute mass of the neutrino would become accessible.