2 sujets IRFU/DPhP

Dernière mise à jour :


««

• Astrophysics

 

Detecting the first clusters of galaxies in the Universe in the maps of the cosmic microwave background

SL-DRF-25-0298

Research field : Astrophysics
Location :

Service de Physique des Particules (DPHP)

Groupe Cosmologie (GCOSMO)

Saclay

Contact :

Jean-Baptiste Melin

Starting date : 01-09-2025

Contact :

Jean-Baptiste Melin
CEA - DRF/IRFU/DPHP/GCOSMO

01 69 08 73 80

Thesis supervisor :

Jean-Baptiste Melin
CEA - DRF/IRFU/DPHP/GCOSMO

01 69 08 73 80

Laboratory link : https://irfu.cea.fr

Galaxy clusters, located at the node of the cosmic web, are the largest gravitationally bound structures in the Universe. Their abundance and spatial distribution are very sensitive to cosmological parameters, such the matter density in the Universe. Galaxy clusters thus constitute a powerful cosmological probe. They have proven to be an efficient probe in the last years (Planck, South Pole Telescope, XXL, etc.) and they are expected to make great progress in the coming years (Euclid, Vera Rubin Observatory, Simons Observatory, CMB- S4, etc.).
The cosmological power of galaxy clusters increases with the size of the redshift (z) range covered by the catalogue. Planck detected the most massive clusters in the Universe in the redshift range 0 Only the experiments studying the cosmic microwave background will be able to observe the hot gas in these first clusters at 2 One thus needs to understand and model the emission of the gas as a function of redshift, but also the emission of radio and infrared galaxies inside the clusters to be ready to detect the first clusters in the Universe. Irfu/DPhP developed the first tools for detecting clusters of galaxies in cosmic microwave background data in the 2000s. These tools have been used successfully on Planck data and on ground-based data, such as the data from the SPT experiment. They are efficient at detecting clusters of galaxies whose emission is dominated by the gas, but their performance is unknown when the emission from radio and infrared galaxies is significant.
This thesis will first study and model the radio and infrared emission from galaxies in the clusters detected in the cosmic microwave background data (Planck, SPT and ACT) as a function of redshift.
Secondly, one will quantify the impact of these emissions on existing cluster detection tools, in the redshift range currently being probed (0 Finally, based on our knowledge of these radio and infrared emissions from galaxies in clusters, we will develop a new cluster extraction tool for high redshift clusters (2 The PhD student will join the Simons Observatory and CMB-S4 collaborations.
Bayesian Inference with Differentiable Simulators for the Joint Analysis of Galaxy Clustering and CMB Lensing

SL-DRF-25-0351

Research field : Astrophysics
Location :

Service de Physique des Particules (DPHP)

Groupe Cosmologie (GCOSMO)

Saclay

Contact :

Arnaud de Mattia

Etienne Burtin

Starting date :

Contact :

Arnaud de Mattia
CEA - DRF/IRFU/DPHP/GCOSMO

01 69 08 62 34

Thesis supervisor :

Etienne Burtin
CEA - DRF/IRFU/DPHP

01 69 08 53 58

The goal of this PhD project is to develop a novel joint analysis for the DESI galaxy clustering
and Planck PR4/ACT CMB lensing data, based on numerical simulations of the surveys and
state-of-the-art machine learning and statistical inference techniques. The aim is to overcome
many of the limitations of the traditional approaches and improve the recovery of cosmological
parameters. The joint galaxy clustering - CMB lensing inference will significantly improve
constraints on the growth of structure upon DESI-only analyses and refine even more the test of general relativity.

 

Retour en haut