Dec 08, 2023
The PEPR Suprafusion, proposed by the CEA and the CNRS, is the winner of the third wave of calls for

The PEPR Suprafusion (Priority Equipment Programme for Exploratory Research), proposed by CEA and CNRS, is the winner of the third wave of calls for projects under the France 2030 plan. The €50 million funding will enable the development of high-temperature superconductors to meet tomorrow's energy and societal challenges, particularly with applications in the field of fusion. The programme is based on 3 axes: the development of the technological building blocks of HTS (high-temperature superconductors), the large-scale demonstration of technological feasibility and the exploration of breakthrough applications.

Mar 10, 2023

The MADMAX project, which was launched in November 2016, is led by the Max Planck Institut für Physik in collaboration with several European institutes. The goal of the project is the discovery of axions with a mass of about 100 µeV, potential candidates for dark matter. To detect these axions, it is necessary to develop a specific detector consisting of an electromagnetic signal amplifier and a magnet proportional to the size of the amplifier and delivering a strong magnetic field. In order to validate the innovations in the fabrication of the magnet conductor, its cooling concept and the quench detection, a demonstrator has been designed, fabricated, integrated and tested between March 2020 and August 2021. It is named MACQU for MADMAX Coil for Quench Understanding. The entire design, from the conductor to the support structure, including the MACQU magnet, its thermal shield and the busbars, was carried out at the CEA. The demonstrator, manufactured by the industrial Bilfinger Noell GmbH, arrived in March 2021 and was successfully tested between May 18 and August 27, 2021. The analysis of the data now completed provides the desired answers and opens up unexpected new avenues of work. The feasibility of the cable concept, its cooling as well as the quench detection for the MADMAX magnet was demonstrated during these tests.

Jun 02, 2023

The commissioning of the 11.7 T Iseult MRI in 2021 crowned almost 20 years of AOC research and development. In an article published in the journal Magnetic Resonance Materials in Physics, Biology and Medicine, Nicolas Boulant and Lionel Quettier, Iseult project leaders for the CEA's Joliot and Irfu Institutes, review the details of this commissioning.

Apr 03, 2023

The recent update of the European Strategy for Particle Physics recommended a feasibility study for the future generation of collider. In this context, the Laboratory Directors Group, of which IRFU is a member, has been mandated by the CERN Council to oversee the development of an accelerator R&D roadmap. One of the objectives of this roadmap is the development of technologies for the manufacture of high-field superconducting magnets, essential for future colliders: this is the HFM (High Field Magnets) project.

Mar 10, 2023

The MADMAX project, which was launched in November 2016, is led by the Max Planck Institut für Physik in collaboration with several European institutes. The goal of the project is the discovery of axions with a mass of about 100 µeV, potential candidates for dark matter. To detect these axions, it is necessary to develop a specific detector consisting of an electromagnetic signal amplifier and a magnet proportional to the size of the amplifier and delivering a strong magnetic field. In order to validate the innovations in the fabrication of the magnet conductor, its cooling concept and the quench detection, a demonstrator has been designed, fabricated, integrated and tested between March 2020 and August 2021. It is named MACQU for MADMAX Coil for Quench Understanding. The entire design, from the conductor to the support structure, including the MACQU magnet, its thermal shield and the busbars, was carried out at the CEA. The demonstrator, manufactured by the industrial Bilfinger Noell GmbH, arrived in March 2021 and was successfully tested between May 18 and August 27, 2021. The analysis of the data now completed provides the desired answers and opens up unexpected new avenues of work. The feasibility of the cable concept, its cooling as well as the quench detection for the MADMAX magnet was demonstrated during these tests.

Nov 27, 2023
IRFU successfully qualified the medium-energy line delivered to Soreq in 2020 after just a few hundred hours of beam, and delivered the first cryomodule for the future linear accelerator.

Thanks to the expertise developed by the CEA during the SPIRAL2 and IFMIF projects, in 2014 the CEA signed a contract with the Soreq Nuclear Research Centre (SNRC, Israel) to build a superconducting linear accelerator called SARAF (Soreq Applied Research Accelerator Facility). The aim is to build an accelerator capable of delivering proton and deuteron beams with energies ranging from 5 to 40 MeV and intensities of up to 5 mA. This equipment will be an important tool for fundamental research, particularly in nuclear physics, the characterisation of materials using neutrons and the production of medical radioisotopes. The CEA is responsible for the design, manufacturing and qualification of 5 sub-assemblies: the MEBT and the 4 cryomodules of the linear accelerator. In 2023, the CEA qualified the MEBT, which was delivered in 2020, and delivered the first cryomodule to Soreq.

Jul 27, 2023
CEA/IRFU has completed the final design of the LB650 cryomodule for the linear accelerator in the PIP-II (Proton Improvement Plan II) project, an essential enhancement to the Fermilab accelerator complex that will supply neutrinos to the DUNE experiment.

The PIP-II (Proton Improvement Plan-II) project is the first particle accelerator to be built in the United States with major in-kind contributions from international partners. CEA/IRFU provides its expertise in the field of superconducting radio-frequency cryomodules and associated technologies. CEA/IRFU has been involved in this project since 2018, with a major contribution to the LB650 superconducting accelerator section, including the design studies, manufacture, and qualification of 10 cryomodules (each of them housing 4 superconducting accelerating cavities), i.e. 1 pre-production cryomodule and the 9 production cryomodules of the accelerator. A major milestone in the CEA/IRFU project was reached in April 2023, with the final design review of the LB650 cryomodule, validating 5 years of design activities. The project is now entering the pre-production cryomodule construction phase.

Apr 03, 2023

The recent update of the European Strategy for Particle Physics recommended a feasibility study for the future generation of collider. In this context, the Laboratory Directors Group, of which IRFU is a member, has been mandated by the CERN Council to oversee the development of an accelerator R&D roadmap. One of the objectives of this roadmap is the development of technologies for the manufacture of high-field superconducting magnets, essential for future colliders: this is the HFM (High Field Magnets) project.

Apr 03, 2023

The recent update of the European Strategy for Particle Physics recommended a feasibility study for the future generation of collider. In this context, the Laboratory Directors Group, of which IRFU is a member, has been mandated by the CERN Council to oversee the development of an accelerator R&D roadmap. One of the objectives of this roadmap is the development of technologies for the manufacture of high-field superconducting magnets, essential for future colliders: this is the HFM (High Field Magnets) project.

Mar 10, 2023

The MADMAX project, which was launched in November 2016, is led by the Max Planck Institut für Physik in collaboration with several European institutes. The goal of the project is the discovery of axions with a mass of about 100 µeV, potential candidates for dark matter. To detect these axions, it is necessary to develop a specific detector consisting of an electromagnetic signal amplifier and a magnet proportional to the size of the amplifier and delivering a strong magnetic field. In order to validate the innovations in the fabrication of the magnet conductor, its cooling concept and the quench detection, a demonstrator has been designed, fabricated, integrated and tested between March 2020 and August 2021. It is named MACQU for MADMAX Coil for Quench Understanding. The entire design, from the conductor to the support structure, including the MACQU magnet, its thermal shield and the busbars, was carried out at the CEA. The demonstrator, manufactured by the industrial Bilfinger Noell GmbH, arrived in March 2021 and was successfully tested between May 18 and August 27, 2021. The analysis of the data now completed provides the desired answers and opens up unexpected new avenues of work. The feasibility of the cable concept, its cooling as well as the quench detection for the MADMAX magnet was demonstrated during these tests.

Jun 02, 2023

The commissioning of the 11.7 T Iseult MRI in 2021 crowned almost 20 years of AOC research and development. In an article published in the journal Magnetic Resonance Materials in Physics, Biology and Medicine, Nicolas Boulant and Lionel Quettier, Iseult project leaders for the CEA's Joliot and Irfu Institutes, review the details of this commissioning.

Nov 15, 2023
EIC is a future electron-ion collider at Brookhaven National Laboratory (BNL) that will probe the internal structure of nucleons and nuclei with unprecedented precision.

The CEA and the DOE have a long and fruitful collaboration in many fields, including fusion, high-energy physics and nuclear physics, with ongoing projects bringing the two organisations together in these different areas.

On Monday 13 November 2023, CEA and DOE signed a “statement of interest” to strengthen their collaboration in accelerator and detector science and technology in preparation for the construction of the Electron-Ion Collider (EIC) based at Brookhaven National Laboratory.
 

 

Retour en haut