15 novembre 2008


Les détecteurs gazeux fondés sur le concept Micromegas, conçus à l’Irfu, prennent position depuis quelques années dans la détection de particules et de rayonnement pour la recherche en physique, et présentent un fort potentiel pour l’instrumentation nucléaire, biomédicale et industrielle. Les efforts récents de R&D ont abouti à de nouveaux procédés de fabrication qui améliorant la performance et le champ d’application de ces détecteurs. Cette seconde génération de Micromegas est déjà mis en place dans plusieurs expériences de physique internationales qui ont recueilli d’excellents résultats depuis l’automne 2008.

 

15 novembre 2008


Les détecteurs gazeux fondés sur le concept Micromegas, conçus à l’Irfu, prennent position depuis quelques années dans la détection de particules et de rayonnement pour la recherche en physique, et présentent un fort potentiel pour l’instrumentation nucléaire, biomédicale et industrielle. Les efforts récents de R&D ont abouti à de nouveaux procédés de fabrication qui améliorant la performance et le champ d’application de ces détecteurs. Cette seconde génération de Micromegas est déjà mis en place dans plusieurs expériences de physique internationales qui ont recueilli d’excellents résultats depuis l’automne 2008.

 

05 décembre 2008
CMS renforce sa préparation aux premières prises de données du LHC, en partie grâce aux contributions des équipes de l'Irfu.

Le 14 novembre 2008, le solénoïde géant de CMS a produit avec succès son champ nominal de 4 T . Ce succès couronne les efforts de l'Irfu dans la conception et la réalisation du plus grand solénoïde supraconducteur du monde. Pendant cette période d’environ un mois, les équipes de CMS ont effectué une campagne de prise de données cosmiques ininterrompue avec le détecteur dans les conditions nominales, collectant ainsi 300 millions d'événements. Cette réussite a permis de mettre en valeur des compétences spécifiques à l’Irfu, notamment en matière de détection, de l’électronique à la reconstruction de traces en passant par les systèmes de contrôle.

05 août 2008
l'état fondamental du bottomonium.

η b, c’est le nom de la particule récemment découverte par les physiciens de l’expérience BaBar. Cet état fondamental du «bottomonium», ensemble des particules formées d’un quark b et d’un antiquark b , était recherché depuis plus de 30 ans et a été identifié dans les désintégrations de la particule Y(3S), un état excité du bottomonium, à partir des dernières données prises en 2008 par l’expérience BaBar. La mesure précise des caractéristiques de cette nouvelle particule est déterminante pour le test et la détermination des paramètres des modèles théoriques de l’interaction forte.

 

04 août 2008

Les physiciens des collaborations CDF et DZero,  en combinant leurs analyses sur les données prises ces cinq dernières années au Tevatron de Fermilab (Chicago),   ont fait un pas de plus vers la mise en  évidence du boson de Higgs, chaînon manquant tant recherché du modèle standard. CDF et DZero ont annoncé le 3 août  à la conférence internationale de physique des  hautes énergies de Philadelphie que la combinaison de leurs analyses combinées exclut avec une grande probabilité (95%) que la  masse du boson de Higgs se situe autour de 170 GeV/c2 (c’est-à-dire environ 170 fois la masse du proton). Cette exclusion est particulièrement intéressante car les limites indirectes obtenues précédemment tendaient à indiquer que la masse du boson de Higgs se situerait plutôt entre 115 et 190 GeV/c2. Le résultat du Tevatron, fruit d’une recherche directe, rétrécit donc le domaine possible de masse de ce boson. C’est aussi le premier nouveau résultat de recherche directe du boson de Higgs après les résultats obtenus à  l’accélérateur LEP du Cern qui s’est arrêté en 2001.

 

18 avril 2008
L'invariance de Lorentz à l'épreuve de l'expérience BaBar

L’expérience BaBar qui se déroule auprès de l’accélérateur PEP-II au SLAC (Californie) prend des données depuis dix ans et a accumulé une telle quantité d’événements qu’elle permet de sonder les aspects les plus subtils à mettre en évidence du modèle standard de la physique des particules et de la théorie quantique des champs. En analysant au fil du temps les systèmes particule-antiparticule de mésons B produits en abondance, une équipe de chercheurs à laquelle participe l’Irfu/SPP a pu ainsi montrer que puisque l’Univers ne présentait pas de direction privilégiée, l’invariance de Lorentz, pierre de touche de la physique moderne, était bien respectée. Cette analyse originale se rapproche conceptuellement de la fameuse expérience de Michelson et Morley qui a démontré l’invariance de la vitesse de la lumière.

12 février 2008

 Le proton, un des éléments de base des noyaux atomiques, est constitué de quarks et de gluons. Mais peut-on photographier les gluons à l’intérieur du proton ? C’est-à-dire mettre au point une méthode qui donne accès à la répartition spatiale de ces composants dans le proton, donc à une échelle plus petite que le femtomètre (ou fermi, 10-15 m). Une première étape vient d’être franchie par l’expérience H1.

 

27 avril 2008
Un fait marquant commun Irfu - Iramis

Le positronium est un état lié entre un électron et son antiparticule, le positon. La production de nuages d’atomes de positronium dans le vide est une condition nécessaire pour réaliser de nouveaux types d’expériences en physique fondamentale sur la gravité et l’antimatière, mais offre aussi un intérêt certain comme sonde des matériaux poreux à l’échelle nanométrique. Une collaboration originale regroupant entre autres des physiciens de l’Irfu et de l’Iramis du CEA-Saclay a réussi à produire ce positronium à un taux record dans des conditions stables et contrôlées 1). Il s’agit d’une étape importante pour le programme visant à tester la gravitation de l’antimatière.

 

 

09 juin 2008
Á la recherche des neutrinos cosmiques

Dans la nuit du 30 mai 2008, les deux dernières lignes d’Antares ont été connectées et mises sous tension à 2500 m au fond de la Méditerranée, portant à douze le nombre de lignes de détection et marquant ainsi la fin de la construction du plus grand télescope sous-marin à neutrinos jamais réalisé.
Immergées quelques semaines plus tôt, ces lignes rejoignent celles qui, depuis 2006, permettent de traquer les neutrinos cosmiques, témoins des phénomènes les plus violents de l’Univers.
Cet événement récompense les efforts de la collaboration européenne1 Antares, et en particulier ceux du CEA-Irfu, acteur majeur par ses contributions.

 

Retour en haut