Nov 30, 2021
The CEA teams in collaboration with those of ESS worked for many months on the conditioning of the RFQ delivered to ESS in 2019. On 28 July 2021, the conditioning was successfully completed with 110% of the nominal operating power and the beam passed through the RFQ for the first time on 26 November. The conditioning of the RFQ marks the end of a multi-year process at CEA for this central component of the future ESS linear accelerator in Sweden.
Sep 02, 2020
On October 28, 2014, CEA signed a contract with the Israeli research center in Soreq (SNRC) for the construction of a accelerator called SARAF (SOREQ Applied Research Accelerator Facility) by IRFU teams. This agreement is materialized by preliminary and detailed study phases over a period of 18 months (2015 and 2016) opening up to a construction, testing and installation phase on the site that will last 6 years.
May 13, 2020
The EUPRAXIA project has just completed its design study phase with the delivery of the Conceptual Design Report (CDR) at the end of 2019. The strong involvement of IRFU, particularly in the field of particle beam physics, has made it possible to show that solutions exist for the realization of a plasma wakefield accelerator, with a beam quality approaching that of conventional accelerators.
Aug 27, 2019
August 27, 2019, a key accelerator component from France was delivered to the European Spallation Source (ESS) in Lund, Sweden, as part of the French in-kind contributions to the next-generation research infrastructure. The Radio Frequency Quadrupole (RFQ) is the first accelerating structure in ESS’ linear accelerator and has been designed, developed and manufactured by the ESS French stakeholder CEA in its institute Irfu (Institute of Research into the Fundamental Laws of the Universe).
Sep 01, 2017
The faster, more powerful European XFEL free-electron laser[1] was inaugurated on September 1, 2017, near Hamburg, Germany. By producing ultra-bright, trillion-photon X-ray flashes at a frequency two hundred times greater than the best preexisting free-electron lasers (FELs), this next-generation European instrument will allow scientists to map the atomic relief of viruses, decipher the molecular composition of cells, create 3-D images of the nanoworld, and even film chemical reactions.

 

Retour en haut