After almost a year collecting data from proton-proton collisions, the LHC at CERN began the injection of lead ions at the beginning of November, with the first collisions obtained on November 8. The energy in the nucleon-nucleon center of mass is 2.76 TeV, around ten times greater than that achieved previously by the RHIC in Brookhaven USA. The first results from ALICE have been made available without delay.
A team of physicists, engineers and technicians from IRFU are developing a new generation of MicroMegas trackers. The planned Compass II experiment at CERN, together with the Clas12 experiment at the Jefferson Lab, will impose new operational constraints preventing the current generation of trackers from working with nominal performance. Tests on a new generation of detectors have been carried out using particle beams generated at CERN. These tests have achieved both of their objectives; a reduction of the discharge rate which is a limiting factor in high flux experiments such as Compass, and a demonstration of their ability to operate under intense magnetic fields, a requirement for the gas detectors of the future Clas12 spectrometer. In a wider perspective, the development of MicroMegas technology is an essential component of the current IRFU research strategy with the recent establishment of a workshop dedicated to the design of this type of detectors.
Forest fires are a constant danger, particularly for arid countries. They act as a brake on economic development and are a threat to environment, by the large scale release of greenhouse gases as well as by the destruction of ecosystems.
The FORFIRE project, which includes the use of Micromegas1 detectors, has been supported by the European Union (FP7 program) in order to develop a network of sensors sensitive to the light emitted during a forest fire, allowing its almost instantaneous detection (opposed to the several minutes required by current methods).
An international team led by astrophysicists from the Lyon Observatory (CRAL, CNRS/INSU, Université Lyon 1) and the AIM laboratory (CEA-Irfu, CNRS, Université Paris 7) has just shed some light on the origins of the giant gas ring in Leo. The astrophysicists were able to detect an optical counterpart to this cloud, which corresponds to stars in formation, using the Canada-France-Hawaii telescope (INSU-CNRS, CNRC, U. Hawaii). The scientists then carried out numerical simulations on the supercomputers at the CEA and suggested a scenario for the formation of this ring. This involved a violent collision between two galaxies. The researchers were able to identify the galaxies involved in the collision and estimate the date of impact. This discovery supports the assertion that the gas in the ring is not primordial, but of galactic origin. This work was published in Astrophysical Journal Letters.
Following its launch on 14 May 2009, the Planck satellite [1] has been continually observing the celestial vault and has mapped the entire sky since 13 August to obtain the first very high resolution image of the dawn of the universe. The Planck satellite has just finished its first sky coverage. The preliminary images reveal undreamed of details of emissions of gas and dust in our own galaxy. Scientists from CEA-IRFU, as part of a broad international collaboration, are currently working on the extraction and exploitation of the catalogues of objects detected by Planck. These preliminary catalogues are essential to understanding and subtracting stray foreground emissions from the background light of the universe, a fossil trace of its earliest epochs. It is also improving understanding of the formation of the largest structures in the universe, clusters of galaxies. The first catalogue will be published in January 2011. In contrast, the definitive scientific publications on the first light of the universe are not expected until the end of 2012.
The CHyMENE project (Cible d'Hydrogène Mince pour l'Etude des Noyaux Exotiques -Thin hydrogen target for the study of exotic nuclei) has the ambitious goal of producing a thin target of pure hydrogen, without using a container, suitable for experiments using the low-energy heavy ion beam planned for SPIRAL2.
A team from IRFU (SPhN and SACM) and from l'Inac/SBT have recently applied cryogenic techniques to successfully produce a ribbon of solid hydrogen 100 μm thick. The target will soon be tested in the beam. This will be a world first.
Below: Interview with Alain GILLIBERT, who is working on the CHyMENE project with Alexandre OBERTELLI and Emmanuel POLLACO
Start image: a solid hydrogen ribbon of extruded H2 (width 10 mm, thickness 100 μm), viewed through the porthole of the vacuum chamber (Photo V. Lapoux).
In August 2010 at CERN in Geneva, a team of physicists from SEDI and SPP working in collaboration with a group from ETH-Zurich obtained the first successful results from a MicroMegas detector operating in a time projection chamber filled with pure cryogenic argon at a temperature of 87.2 kelvin.
The Double Chooz collaboration recently completed its neutrino detector which will see anti-neutrinos coming from the Chooz nuclear power plant in the French Ardennes. The experiment is now ready to take data in order to measure fundamental neutrino properties with important consequences for particle and astro-particle physics.
contacts:
In August 2010 at CERN in Geneva, a team of physicists from SEDI and SPP working in collaboration with a group from ETH-Zurich obtained the first successful results from a MicroMegas detector operating in a time projection chamber filled with pure cryogenic argon at a temperature of 87.2 kelvin.
In Japan at the end of January 2010, the detectors of the Tokai to Superkamiokande (T2K, [ti:tu:kei]), developed at Saclay, observed their first neutrinos. These detectors consist of two large chambers where the tracks of charged particles are able to be reconstructed and the neutrino beam can be characterized. In this experiment, neutrinos are created by a proton beam coming from the Tokai accelerator. These same neutrinos are then measured 300 km away, at Kamioka, in a large water vessel 40 m in diameter and 40 m high, which was previously used to study neutrinos coming from cosmic ray interactions in the atmosphere and to definitively prove the phenomena of neutrino oscillation (leading to a Nobel Prize for Masatoshi Koshiba in 2002). The first interaction with a neutrino coming from Tokai was observed at the end of February in the detector at Kamioka, marking the beginning of a very exciting new phase in neutrino physics.
The instrument known as MUSETT1 detected its first heavy nuclei during a commissioning experiment that took place in early April 2010 at the GANIL2 accelerator in Caen. MUSETT was built for identifying very heavy elements: transfermium, which are the elements beyond fermium (Z=100). Nuclear physicists are interested in these extreme state of matter for testing the theoretical models that describe the nuclei. Initial results obtained with MUSETT are highly satisfactory, providing very good identification of the produced isotopes, thanks to an original method called ‘genetic correlations’. This method can tag nuclei by detecting its decay. MUSETT provides a preview of the detection for the future Super Separator Spectrometer S3, dedicated to the hyper-intense SPIRAL23 beams, which will allow scientists to explore the heaviest nuclei.
The CHyMENE project (Cible d'Hydrogène Mince pour l'Etude des Noyaux Exotiques -Thin hydrogen target for the study of exotic nuclei) has the ambitious goal of producing a thin target of pure hydrogen, without using a container, suitable for experiments using the low-energy heavy ion beam planned for SPIRAL2.
A team from IRFU (SPhN and SACM) and from l'Inac/SBT have recently applied cryogenic techniques to successfully produce a ribbon of solid hydrogen 100 μm thick. The target will soon be tested in the beam. This will be a world first.
Below: Interview with Alain GILLIBERT, who is working on the CHyMENE project with Alexandre OBERTELLI and Emmanuel POLLACO
Start image: a solid hydrogen ribbon of extruded H2 (width 10 mm, thickness 100 μm), viewed through the porthole of the vacuum chamber (Photo V. Lapoux).
A team of physicists, engineers and technicians from IRFU are developing a new generation of MicroMegas trackers. The planned Compass II experiment at CERN, together with the Clas12 experiment at the Jefferson Lab, will impose new operational constraints preventing the current generation of trackers from working with nominal performance. Tests on a new generation of detectors have been carried out using particle beams generated at CERN. These tests have achieved both of their objectives; a reduction of the discharge rate which is a limiting factor in high flux experiments such as Compass, and a demonstration of their ability to operate under intense magnetic fields, a requirement for the gas detectors of the future Clas12 spectrometer. In a wider perspective, the development of MicroMegas technology is an essential component of the current IRFU research strategy with the recent establishment of a workshop dedicated to the design of this type of detectors.