Dec 06, 2017

For more than 10 years now, Irfu physicists and engineers have been developing in Saclay the necessary equipment for the GBAR experiment, designed to test the behaviour of antimatter under terrestrial gravity. An important step has just been taken with the installation at the Cern of a new positron source using on an electron linac, and the transport to the Cern of the positron trapping system built at Saclay.

The new source produced its first positrons on November 17, 2017. The installation of the traps is in progress, to be operational when the antiprotons arrive, scheduled for spring 2018.

Jan 30, 2017

The Dark Energy Spectroscopic Instrument (Desi) will analyze the light emitted by 35 million galaxies and quasars at various times in the past of the Universe and up to 11 billion years to better understand dark energy. Its move into the construction phase in 2016 crowns several years of research and development that have resulted in a solid design and a credible observation strategy. Irfu, a partner in the project from the outset, has played a key role. A look back at a year that saw the project become a reality.

A new phase begins for DESI

The construction phase of DESI was launched last summer after approval by the U.S. Department of Energy (DOE). Its installation at the 4m Mayall Telescope (Fig. 1) located at the Kitt Peak National Observatory in Arizona will begin in 2018 with the arrival of the field corrector.
 
The observation campaign, covering one third of the sky, will begin in 2019 and will last 5 years. It is expected to produce 10 times more data than the previous project, BOSS (Baryon Oscillation Spectroscopic Survey), completed two years ago. This final phase of DOE approval allows construction of the instrument's core components to begin. Namely, the 5000 fiber-positioning robots (Fig. 2) that will allow precise pointing of the objects whose light we want to capture - galaxies, quasars, stars - and the spectrographs powered by the optical fibers that will analyze the light collected by breaking it down into multiple wavelengths. 

Oct 31, 2017

The ScanPyramids collaboration has discovered a new void in the heart of the Kheops pyramid. This large vacuum was detected by muonic imaging techniques conducted by three separate teams from Nagoya University (Japan), CEC (Japan) and CEA/IRFU. It is the first discovery of a major internal structure of Kheops since the Middle Ages.

Similar in size to the Great Gallery, an architectural structure located in the heart of the Great Pyramid (47m long, 8m high), this new cavity, called ScanPyramids Big Void, has a minimum length of 30 metres. First observed with nuclear emulsion films installed in the Queen's Chamber (Nagoya University), then detected with a scintillator telescope installed in the same chamber (KEK), it was confirmed with gas detectors, MICROMEGAS, located outside the pyramid (CEA), and thus with a very different angle of view allowing to refine the location of this void. This is the first time that an instrument has detected a cavity located at the bottom of a pyramid from the outside.

These results were published by the ScanPyramids team on November 2, 2017 in the journal Nature.

 

Retour en haut