Jun 01, 2021
The ICAR cryomechanisms that will equip the METIS instrument on the world's largest telescope, the ELT, by 2029 have just passed the final design review by an ESO expert committee.

Resulting from a product lineage initiated in 1997 for the developments linked to the VISIR project (VLT Imager and Spectrometer for mid Indra Red), the CEA's cryomechanisms named ICAR (Indexed Cryogenic Actuator for Rotation) will equip the METIS instrument on the largest telescope in the world: the Extremely Large Telescope (ELT) by 2029. For this fifth generation of mechanisms (2004 VISIR, 2010 MIRI, 2012 CAMISTIC, 2017 EUCLID), the IRFU teams had to review the architecture of these mechanisms in order to significantly reduce their manufacturing costs, without degrading their performance (positioning repeatability of 15 µrad peak to peak). The ICAR cryomechanisms have just passed the final design review by a committee of experts from ESO (European Southern Observatory). With this success, the project can now enter the procurement phase for the qualification and series models.

See: video of the design and assembly stages of the prototype over the period 2018-2021

Jun 01, 2021
The ICAR cryomechanisms that will equip the METIS instrument on the world's largest telescope, the ELT, by 2029 have just passed the final design review by an ESO expert committee.

Resulting from a product lineage initiated in 1997 for the developments linked to the VISIR project (VLT Imager and Spectrometer for mid Indra Red), the CEA's cryomechanisms named ICAR (Indexed Cryogenic Actuator for Rotation) will equip the METIS instrument on the largest telescope in the world: the Extremely Large Telescope (ELT) by 2029. For this fifth generation of mechanisms (2004 VISIR, 2010 MIRI, 2012 CAMISTIC, 2017 EUCLID), the IRFU teams had to review the architecture of these mechanisms in order to significantly reduce their manufacturing costs, without degrading their performance (positioning repeatability of 15 µrad peak to peak). The ICAR cryomechanisms have just passed the final design review by a committee of experts from ESO (European Southern Observatory). With this success, the project can now enter the procurement phase for the qualification and series models.

See: video of the design and assembly stages of the prototype over the period 2018-2021

Mar 26, 2021

The large aperture (90 mm) quadrupole superconducting electromagnet for the CERN HL-LHC project, manufactured and tested at 4.2 K by the IRFU teams, reached its nominal gradient of 120 T/m (defined for 1.9 K) the 5th of March, 2021. These very good results validate the design and manufacturing process proposed by the IRFU engineers and were the subject of a technology transfer to the industrial companies working on the European project QuaCo (QUAdrupoleCOrector). This magnet was produced as part of the LHC upgrade in luminosity project called HiLumi-LHC. These NbTi magnets are part of the insertion magnets. They may be placed upstream and downstream of detectors such as ATLAS and CMS at the center of which the 2 beams cross to make the collisions. They should ensure the compression of the beams before collisions and thus contribute to increasing the integrated luminosity of the HL-LHC (i.e. the total number of collisions), up to ten times greater than the initial nominal value of the LHC.

May 19, 2021
IRFU engineers and physicists and their collaborators have just completed the development of a modern Sirius, a key element of the super spectrometer separator (S3) under construction at GANIL.

The ancients understood that heroes, like Orion with Sirius, need their faithful companion. IRFU engineers and physicists and their collaborators are no exception to the rule and have just completed the development of a modern Sirius, a key element of the super spectrometer separator (S3) under construction at GANIL. The tests having been successful and the system has been moved to GANIL for its final installation.

In Greek mythology, Sirius, Orion's faithful four-legged companion, an outstanding hunter, was transformed into a constellation and placed at his side. This famous canid also gave its name to the brightest star in the night sky. IRFU physicists have just honoured him in their own way, this time in the world of detectors.

 

Retour en haut