A prototype of the MXT camera arrived at the CNES in Toulouse on 25 October 2018. This is the Structural and Thermal Model (STM), which will be integrated into the telescope that will be sent to China to be mounted on the SVOM satellite Qualification Model.
The objective of this model is to validate the thermo-mechanical design of the camera. It also makes it possible to check the manufacturing and assembly capacity of the various components, which represent more than 1,000 elements. The model realized includes all the camera subassemblies with a good level of representativeness of the flight model, both on its external design (interfaces with the telescope) and on its internal design (harnesses, connectors...). The electrical parts (detector, electronic boards, motor) are replaced by weights and heaters to simulate their mechanical and thermal behaviour.
After more than 5 years of development, including 6 months of integration work of the 12,000 separate components to a complete cryomodule, the CEA-Irfu has just validated the technology of this complex system that reached the nominal ESS accelerating field in the 4 superconducting accelerating cavities.
At the limits of technology, this is the first time that such an intense accelerating field, maintained over such long pulse durations and with such high RF power, has been measured in superconducting cavities installed in a complete cryomodule.
This key step makes it possible to start the production phase of the 30 cryomodules that France is to deliver to the ESS research infrastructure, which will be operational in Sweden in 2023. This serial integration will begin in January 2019 under the supervision of Irfu with the contribution of the company B&S France and should be completed in 2022.
As part of the new CLAS spectrometer project for the 12 GeV electron energy upgrade of the Jefferson Lab (USA) IRFU has been conducting R&D for more than 10 years to design and build a new generation tracker, using thin and flexible MICROMEGAS detectors that are now operating with the new CLAS12 spectrometer. After one year of installation, this tracker is operational and meets the expected characteristics with more than 95% detection efficiency and a spatial resolution of less than 100μm. After a dedicated data collection to measure the detector response, the new CLAS12 spectrometer is now collecting data for the DVCS physics experiment, where IRFU also participates and which objective is to measure the internal structure of the proton in three dimensions.
The exceptional success of the tracker project, that results from a close collaboration between IRFU's engineering and physics departments (DEDIP, DIS and DPHN), has been an example for other projects. Let us quote the LHC experiments for particle hunting, the muonic imaging of the pyramids, as well as a transfer of know-how to industry.
A prototype of the MXT camera arrived at the CNES in Toulouse on 25 October 2018. This is the Structural and Thermal Model (STM), which will be integrated into the telescope that will be sent to China to be mounted on the SVOM satellite Qualification Model.
The objective of this model is to validate the thermo-mechanical design of the camera. It also makes it possible to check the manufacturing and assembly capacity of the various components, which represent more than 1,000 elements. The model realized includes all the camera subassemblies with a good level of representativeness of the flight model, both on its external design (interfaces with the telescope) and on its internal design (harnesses, connectors...). The electrical parts (detector, electronic boards, motor) are replaced by weights and heaters to simulate their mechanical and thermal behaviour.
As part of the new CLAS spectrometer project for the 12 GeV electron energy upgrade of the Jefferson Lab (USA) IRFU has been conducting R&D for more than 10 years to design and build a new generation tracker, using thin and flexible MICROMEGAS detectors that are now operating with the new CLAS12 spectrometer. After one year of installation, this tracker is operational and meets the expected characteristics with more than 95% detection efficiency and a spatial resolution of less than 100μm. After a dedicated data collection to measure the detector response, the new CLAS12 spectrometer is now collecting data for the DVCS physics experiment, where IRFU also participates and which objective is to measure the internal structure of the proton in three dimensions.
The exceptional success of the tracker project, that results from a close collaboration between IRFU's engineering and physics departments (DEDIP, DIS and DPHN), has been an example for other projects. Let us quote the LHC experiments for particle hunting, the muonic imaging of the pyramids, as well as a transfer of know-how to industry.
The STEREO experiment presented its first physics results at the 53rd Rencontres de Moriond1. STEREO is a neutrino detector made up of six scintillation liquid cells that has been measuring, since November 2016, the electronic antineutrinos produced by the Grenoble high neutron flux reactor 10 metres from the reactor core. The existence of a fourth neutrino state, called sterile neutrino, could explain the deficit in neutrino flux detected at a short distance from nuclear reactors compared to the expected value. Indeed, this anomaly could result from a short-range oscillation that would result in less expected electronic antineutrinos being detected because they would disappear into sterile neutrinos. The first results obtained in 2018 after 66 days of data exclude a significant part of the parameter space. The experiment will continue to take data until the end of 2019. By multiplying the statistics by four and minimizing systematic analysis errors, STEREO will be able to shed light on the existence of this 4th neutrino family.
153rd Rencontres de Moriond Electroweak session
After the validation of the last superconducting toroidal field coils, the CEA's contribution to the construction of the Japanese JT-60SA Tokamak, dedicated to the study of nuclear fusion, is nearing completion. Ten of them (out of twenty) were manufactured under the responsibility of the CEA by GE Power in Belfort. These coils of nearly 16 tons each will fly to Naka in mid-February to join their sisters and integrate the structure of the Japanese Tokamak. These essential components for the Japanese fusion device are part of the International Thermonuclear Experimental Reactor (ITER) extended approach project, an international project for a civil nuclear fusion research reactor currently being built at Cadarache (Bouches-du-Rhône).
After more than 5 years of development, including 6 months of integration work of the 12,000 separate components to a complete cryomodule, the CEA-Irfu has just validated the technology of this complex system that reached the nominal ESS accelerating field in the 4 superconducting accelerating cavities.
At the limits of technology, this is the first time that such an intense accelerating field, maintained over such long pulse durations and with such high RF power, has been measured in superconducting cavities installed in a complete cryomodule.
This key step makes it possible to start the production phase of the 30 cryomodules that France is to deliver to the ESS research infrastructure, which will be operational in Sweden in 2023. This serial integration will begin in January 2019 under the supervision of Irfu with the contribution of the company B&S France and should be completed in 2022.
The STEREO experiment presented its first physics results at the 53rd Rencontres de Moriond1. STEREO is a neutrino detector made up of six scintillation liquid cells that has been measuring, since November 2016, the electronic antineutrinos produced by the Grenoble high neutron flux reactor 10 metres from the reactor core. The existence of a fourth neutrino state, called sterile neutrino, could explain the deficit in neutrino flux detected at a short distance from nuclear reactors compared to the expected value. Indeed, this anomaly could result from a short-range oscillation that would result in less expected electronic antineutrinos being detected because they would disappear into sterile neutrinos. The first results obtained in 2018 after 66 days of data exclude a significant part of the parameter space. The experiment will continue to take data until the end of 2019. By multiplying the statistics by four and minimizing systematic analysis errors, STEREO will be able to shed light on the existence of this 4th neutrino family.
153rd Rencontres de Moriond Electroweak session
The first triplet of superconducting multipoles of the S3 Super Separator Spectrometer arrived at Ganil on August 29, 2018. S3 is one of the experiment rooms of the Spiral2 facility. The magnet, with a mass of 2.8 tonnes, is 1.8 m long and almost as high. This innovative type of magnet is very compact despite the number of optical functions it can generate (quadrupole, sextupole, octupole and dipole). It is the first of a series of seven to be delivered to the Ganil.
The magnetic field is generated by a niobium-titanium alloy (NbTi) conductor arranged in an epoxy/glass fibre matrix and operate at the temperature of the liquid helium (4.2 kelvins). The power supply leads are composed of two types of high-temperature superconductors and nitrogen-cooled.
It’s a unique design resulting from a collaboration between Ganil, CEA/Irfu, the American laboratory in Argonne Nat. Lab. and the two manufacturers in charge of prototyping and series (Advanced Magnet Lab. for superconducting coils, Cryomagnetics Inc. for cryostats and integration).
This element was financed by EQUIPEX n° 10-EQPX-0046, awarded to S3 by the National Research Agency in 2011.
Contacts: Antoine Drouart, Myriam Grar (Ganil) et Hervé Savajols (Ganil)
A prototype of the MXT camera arrived at the CNES in Toulouse on 25 October 2018. This is the Structural and Thermal Model (STM), which will be integrated into the telescope that will be sent to China to be mounted on the SVOM satellite Qualification Model.
The objective of this model is to validate the thermo-mechanical design of the camera. It also makes it possible to check the manufacturing and assembly capacity of the various components, which represent more than 1,000 elements. The model realized includes all the camera subassemblies with a good level of representativeness of the flight model, both on its external design (interfaces with the telescope) and on its internal design (harnesses, connectors...). The electrical parts (detector, electronic boards, motor) are replaced by weights and heaters to simulate their mechanical and thermal behaviour.
As part of the new CLAS spectrometer project for the 12 GeV electron energy upgrade of the Jefferson Lab (USA) IRFU has been conducting R&D for more than 10 years to design and build a new generation tracker, using thin and flexible MICROMEGAS detectors that are now operating with the new CLAS12 spectrometer. After one year of installation, this tracker is operational and meets the expected characteristics with more than 95% detection efficiency and a spatial resolution of less than 100μm. After a dedicated data collection to measure the detector response, the new CLAS12 spectrometer is now collecting data for the DVCS physics experiment, where IRFU also participates and which objective is to measure the internal structure of the proton in three dimensions.
The exceptional success of the tracker project, that results from a close collaboration between IRFU's engineering and physics departments (DEDIP, DIS and DPHN), has been an example for other projects. Let us quote the LHC experiments for particle hunting, the muonic imaging of the pyramids, as well as a transfer of know-how to industry.