Sep 02, 2020

On October 28, 2014, CEA signed a contract with the Israeli research center in Soreq (SNRC) for the construction of a accelerator called SARAF (SOREQ Applied Research Accelerator Facility) by IRFU teams. This agreement is materialized by preliminary and detailed study phases over a period of 18 months (2015 and 2016) opening up to a construction, testing and installation phase on the site that will last 6 years.


The aim is to build a superconducting linear accelerator capable of providing proton and deuteron beams of variable energy between 5 and 40 MeV with an intensity of up to 5mA. This facility is intended for fundamental and applied research in many fields.


The schedule, associated with this project, includes successively the delivery and installation on site and then the testing of three sub-assemblies:

  • The medium energy line, MEBT (in 2020),
  • The first cryomodule (in 2021),
  • The three remaining cryomodules (in 2022

 

Dec 15, 2020

In December 2019, the NFS (Neutrons For Science) facility received its first proton beams, delivered by the linear accelerator of the new Spiral2 facility at the GANIL. On the fringes of the progressive commissioning of the accelerator in 2020, short beam periods were used to successfully test several NFS components. The first experiments are planned at the facility in the fall of 2021.

A first beam of protons accelerated up to 33 MeV was sent in December 2019 to the NFS irradiation station (Figure 1), coupled to a pneumatic transfer system aiming at transporting the irradiated samples to a measurement station. The production cross-sections of different nuclei (obtained through irradiation of iron and copper samples) were thus measured. The results of this test are in agreement with previously published data. The irradiation and measuring device, built and operated by physicists from the NPI laboratory in Rez (Czech Republic), will be used in the future for novel measurements of reaction cross sections by activation.

Sep 02, 2020

On October 28, 2014, CEA signed a contract with the Israeli research center in Soreq (SNRC) for the construction of a accelerator called SARAF (SOREQ Applied Research Accelerator Facility) by IRFU teams. This agreement is materialized by preliminary and detailed study phases over a period of 18 months (2015 and 2016) opening up to a construction, testing and installation phase on the site that will last 6 years.


The aim is to build a superconducting linear accelerator capable of providing proton and deuteron beams of variable energy between 5 and 40 MeV with an intensity of up to 5mA. This facility is intended for fundamental and applied research in many fields.


The schedule, associated with this project, includes successively the delivery and installation on site and then the testing of three sub-assemblies:

  • The medium energy line, MEBT (in 2020),
  • The first cryomodule (in 2021),
  • The three remaining cryomodules (in 2022

 

Nov 13, 2020

ESA has adopted Ariel (Atmospheric Remote-sensing Infrared Exoplanet Large-survey), the 4th medium-class space mission of its Cosmic Vision program. Ariel is expected to be launched in 2029 by Ariane 6 from the Guiana Space Centre in Kourou. The French team, composed of CNES, CEA and CNRS, has taken charge of the design, production and delivery of the AIRS spectrometer. Pierre Olivier Lagage, astrophysicist at Irfu, is one of the 2 co-PI for the ARIEL consortium; the other co-PI is Jean-Philippe Beaulieu from IAP.

 

 

Jul 15, 2020

In order for the images produced by the future MRI to be free of distortions or artifacts, the magnetic field generated by the Iseult magnet must be homogeneous to 0.5 PPM (parts per million) around the patient's brain. To meet this challenging specification, it was necessary to provision means of "shimming" the field, i.e. of correcting all the small defects that would inevitably arise from the manufacturing process. 5904 pieces of shim (small iron platelets) were screwed onto rails and installed inside the magnet tunnel. This first configuration was tested on Thursday, July 9, 2020 by mapping its effect on the magnetic field of Iseult at 3 T. The results are very encouraging as this first shimming iteration allowed to increase the homogeneity of the field in the useful zone from 138.8 to 3.2 PPM (value extrapolated to 11.72 T from magnetic measurements at 3 T).

Dec 15, 2020

In December 2019, the NFS (Neutrons For Science) facility received its first proton beams, delivered by the linear accelerator of the new Spiral2 facility at the GANIL. On the fringes of the progressive commissioning of the accelerator in 2020, short beam periods were used to successfully test several NFS components. The first experiments are planned at the facility in the fall of 2021.

A first beam of protons accelerated up to 33 MeV was sent in December 2019 to the NFS irradiation station (Figure 1), coupled to a pneumatic transfer system aiming at transporting the irradiated samples to a measurement station. The production cross-sections of different nuclei (obtained through irradiation of iron and copper samples) were thus measured. The results of this test are in agreement with previously published data. The irradiation and measuring device, built and operated by physicists from the NPI laboratory in Rez (Czech Republic), will be used in the future for novel measurements of reaction cross sections by activation.

 

Retour en haut