12 sujets IRFU/DPhN

Dernière mise à jour :


• Physique nucléaire

• Physique des particules

• Physique nucléaire

 

Apprentissage automatique appliqué aux problèmes inverses de structure des hadrons

SL-DRF-24-0306

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire structure du nucléon (LSN) (LSN)

Saclay

Contact :

Valerio Bertone

Hervé Moutarde

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Valerio Bertone
CEA - DRF/IRFU/DPhN/LSN


Directeur de thèse :

Hervé Moutarde
CEA - DRF/IRFU/DPhN

33 1 69 08 32 06

Labo : https://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=4189

Caractériser la structure multidimensionnelle des hadrons en termes de quarks et gluons est aujourd’hui l’un des objectifs majeurs de la physique hadronique. C’est en effet la thématique centrale de plusieurs installation expérimentales à travers le monde, mais également l’une des raisons principales de la construction de futurs collisionneurs aux États-Unis comme en Chine. C’est également l’un des points de recherche clés des simulations numériques intensives de l’interaction forte. Cependant, dans ces deux cas, la connexion entre les données mesurées et simulées d’une part, et la structure multidimensionnelle des hadrons d’autre part, n’est pas directe. Les données sont liées à la structure des hadrons via des problèmes inverses multidimensionnels et mathématiquement mal posés. Il a été montré que ces problèmes inverses entraînent un accroissement significatif des incertitudes, au point d’en devenir dans certains cas la source dominante. Le but de la thèse est d’utiliser des outils d’apprentissage automatique pour à la fois évaluer, réduire, propager correctement les incertitudes, depuis les données expérimentales ou de simulation jusqu’à la structure multidimensionnelle des hadrons. La stratégie pour y arriver consiste à développer une architecture originale de réseau de neurones capable de tenir compte de l'ensemble des propriétés théoriques issues de la chromodynamique quantique, puis de l'adapter aux problèmes inverses reliant les données expérimentales et de simulation à la structure 3D des hadrons.
Etude de la structure 3D des pions avec CLAS12

SL-DRF-24-0328

Domaine de recherche : Physique des particules
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire structure du nucléon (LSN) (LSN)

Saclay

Contact :

Maxime DEFURNE

Damien NEYRET

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Maxime DEFURNE
CEA - DRF/IRFU/DPhN/LSN

01 69 08 32 37

Directeur de thèse :

Damien NEYRET
CEA - DRF/IRFU/DPhN/LSN

01 69 08 75 52

Labo : https://irfu.cea.fr/dphn/

En collaboration avec le laboratoire Thomas Jefferson (JLab) aux USA, les scientifiques du Laboratoire de structure du nucléon à l'Irfu cherchent à comprendre comment quarks et gluons s'assemblent pour former les hadrons tels que les protons, les neutrons et les pions. A JLab, un faisceau d'électrons de 11 GeV est envoyé sur une cible de protons. Ces protons sont constitués de trois quarks avec un nuage de paires quark/antiquark portant les mêmes nombres quantiques que le pion. Les électrons du faisceau vont interagir avec ces paires quark/antiquark, nous permettant de sonder leur structure assimilable à un pion. Plus précisément, nous nous intéresserons à la diffusion Compton profondément virtuelle (DVCS) renseignant sur les corrélations entre impulsion longitudinale et position transverse des quarks dans un pion. En d'autres termes, nous effectuerons la toute première étude tri-dimensionnelle de la structure d'un pion. Le/la doctorante analysera les données déjà collectées de CLAS12 afin d'isoler les collisions DVCS. Nous développerons un jumeau numérique de la chaîne simulation Geant4/reconstruction avec un conditional Generative Adversarial Network qui nous permettra de caractériser plus rapidement et plus justement le bruit de fond afin de le soustraire plus efficacement. Le doctorant voyagera deux à trois fois par an au JLab afin de participer aux prises de données en cours et au meeting de collaboration. Les résultats seront présentés en conférence internationale et publiés dans des journaux scientifiques.
Etude des premiers événements de désintégration double-bêta du Xénon-136 de l'expérience PandaX-III basées sur des techniques de réseaux neuronaux

SL-DRF-24-0392

Domaine de recherche : Physique des particules
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire structure du nucléon (LSN) (LSN)

Saclay

Contact :

Damien NEYRET

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Damien NEYRET
CEA - DRF/IRFU/DPhN/LSN

01 69 08 75 52

Directeur de thèse :

Damien NEYRET
CEA - DRF/IRFU/DPhN/LSN

01 69 08 75 52

Voir aussi : https://pandax.sjtu.edu.cn/

La collaboration PandaX-III propose de déterminer si le neutrino est une particule de Majorana, c'est-à-dire sa propre antiparticule. Dans ce but cette collaboration internationale, à laquelle participe l'institut de recherche sur les lois fondamentales de l'univers (IRFU) du CEA Saclay, veut mettre en évidence des doubles désintégrations bêta du Xénon 136 sans émission simultanée de neutrino, où l'apparition des deux électrons n'est pas compensée par l'émission de deux anti-neutrinos. Une telle découverte violerait le principe de conservation du nombre leptonique, en contradiction avec le Modèle Standard de la physique des particules. Cette recherche d'événements rares nécessite l'utilisation d'une énorme quantité de Xénon 136, un site expérimental profond protégé des rayons cosmiques et non radioactif, le laboratoire souterrain de Jinping (CJPL, province du Sichuan, Chine), et une détection de très haute performance. La première phase de l'expérience vise à construire un premier module TPC (chambre à projection temporelle) de 145kg de Xénon, qui sera plus tard suivi de quatre autres modules de 200kg. Les TPC seront dotées de détecteurs capables de mesurer l'énergie des deux électrons bêta avec une excellente précision. Le premier module TPC sera mis en service vers la fin 2024. Le parcours des deux électrons émis lors de la désintégration double-bêta sera alors reconstruit afin de mesurer l'énergie initiale de ces électrons et de reconnaître la topologie de leurs trajectoires et de les différencier des événements de bruit de fond gammas qui n'émettent qu'un seul électron. Ce module sera équipé de détecteurs gazeux Micromegas qui présentent une bonne résolution en énergie et une très bonne radio-pureté limitant la présence de bruits de fond gammas de contamination radioactive.

La collaboration PandaX-III est en train de compléter la construction du premier module TPC. Celui-ci sera installé sur place au CJPL au cours de l'année 2024. Des algorithmes de reconstruction des données des détecteurs par réseaux neuronaux sont en cours de développement, afin de compléter les méthodes analytiques déjà implémentées dans l'environnement de reconstruction et d'analyse de données REST pour optimiser la sélection des événements double-bêta par rapport aux bruits de fond gammas et la qualité de la reconstruction de l'énergie des électrons. Ces algorithmes sont entraînés et testés au fur et à mesure sur des données Monte-Carlo. Les données d'un prototype de TPC de taille réduite seront aussi disponibles pour des tests des algorithmes en conditions réelles. Dès l'installation du premier module fin 2024 ces algorithmes seront utilisés pour la calibration des détecteurs et leur prise en compte dans l'analyse, et pour l'extraction des premiers résultats de physique sur la production des événements de désintégration double-bêta.

Le travail principal du doctorant sera de contribuer au développement des algorithmes de reconstruction des données par réseaux neuronaux, principalement en prenant en compte les imperfection des détecteurs (voies manquantes, inhomogénéité des performances, impuretés du gaz, etc...) et en implémentant dans REST les méthodes de correction des données nécessaires pour compenser ces imperfections. Ce travail impliquera l'étude des données de chambres de test, ainsi que de simulations Monte Carlo. D'autre part, dès que les données du premier module seront disponibles le doctorant participera à l'analyse de ces données et à l'extraction des résultats. Les résultats de ces études feront l'objet de publications et de présentations en conférence. L'étudiant pourra aussi participer à une R&D sur l'optimisation des détecteurs Micromegas afin d'améliorer leur résolution en énergie, ainsi que leur fonctionnement à haute pression et en environnement de Xénon gazeux.

Un stage de Master 2 de 4 à 6 mois pourra être effectué préalablement à cette thèse au sein du groupe PandaX-III du DPhN.
Mesure de la polarisation de l'hyperon Lambda dans les processus exclusifs profondément virtuels de production de mésons

SL-DRF-24-0386

Domaine de recherche : Physique des particules
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire structure du nucléon (LSN) (LSN)

Saclay

Contact :

Francesco BOSSU

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Francesco BOSSU
CEA - DRF/IRFU/SPhN


Directeur de thèse :

Francesco BOSSU
CEA - DRF/IRFU/SPhN


Cette thèse se concentre sur la mesure de la polarisation des hyperons Lambda dans des processus profondément virtuels de production exclusif de mesons. L'étude est ancrée dans une découverte surprenante des années 1970 : lors de collisions proton-béryllium, les hyperons Lambda ont montré une polarisation transverse, remettant en question les prédictions de la chromodynamique quantique perturbative. Des polarisations similaires ont depuis été observées dans divers systèmes de collisions.
Le sujet de recherche proposé exploite des réactions exclusives profondément virtuelles dans la diffusion électron-proton, ce qui permet un contrôle précis des états finaux et des polarisations initiales des particules. Plus précisément, la réaction e+p->e+Lambda+K+ est explorée pour éclairer la polarisation des hyperons Lambda. Ce processus est également sensible aux distributions généralisées de partons de transversité (GPD), encore très peu connues du nucléon, offrant des informations précieuses sur les propriétés du nucléon.
La thèse vise à analyser les données collectées avec l'expérience CLAS12 au Jefferson Laboratory (JLab, USA), en se focalisant sur les collisions e-p avec une cible NH3 polarisée longitudinalement. Des algorithmes d'apprentissage automatique et des simulations seront utilisés pour améliorer la reconstruction des données et la sélection des candidats d'événements. Le candidat contribuera également aux études de simulation pour les futurs détecteurs et leurs algorithmes de reconstruction pour l'Electron Ion Collider (EIC).
La recherche sera menée au sein du Laboratoire de Structure Nucléaire de CEA/Irfu. Des connaissances en physique des particules, en informatique (C++, Python) et une connaissance des détecteurs de particules sont souhaitable pour un démarrage rapide de l'analyse des données.
L'étudiant.e aura l'opportunité de collaborer avec des chercheurs locaux et internationaux, de participer à la collaboration CLAS, de rejoindre le groupe d'utilisateurs de l'EIC avec des voyages fréquents aux États-Unis pour la collecte de données et des workshops, et de présenter les résultats de sa recherche lors de conférences internationales.
Mesure de la production de Drell-Yan dans des collisions proton-proton et les dileptons du prééquilibre dans des collisions ions lourds avec l´expérience LHCb au LHC

SL-DRF-24-0277

Domaine de recherche : Physique des particules
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire plasma de quarks et gluons (LQGP) (LQGP)

Saclay

Contact :

Michael Winn

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Michael Winn
CEA - DRF/IRFU/DPhN/ALICE

+33 1 69 08 55 86

Directeur de thèse :

Michael Winn
CEA - DRF/IRFU/DPhN/ALICE

+33 1 69 08 55 86

Au grand collisionneur de hadrons (LHC) à Genève, des collisions de noyaux de plomb sont utilisées pour créer un système thermodynamique décrit par la dynamique des fluides sous des conditions extrêmes. La température du système est suffisamment grande pour relâcher les blocs fondamentaux de la matière à une échelle subnucléonique, les quarks et les gluons. Cet état de la matière est nommé le plasma de quarks et de gluons (PQG). L´évolution de l´espace-temps des collisions d´ions lourds au LHC est décrite par l´hydrodynamique d´un fluide presque parfait après une durée très courte. Néanmoins, des aspects clés des premières phases de ces collisions sont largement inconnus. Les caractéristiques sont cruciales pour la compréhension de l´applicabilité de l´hydrodynamique et pour la compréhension de la thermalisation de la matière en interaction forte. Dans des publications récentes, il a été mis en évidence que la production des dileptons dans la gamme de masse intermédiaire entre 1.5 GeV/c² et 5 GeV/c² est hautement sensible à l´échelle temporelle de la ´thermalisation´ vers le PQG à l´équilibre.

En plus, le LHC fournit des faisceau de protons et d´ions lourds de haute énergie. Ils permettent d´accéder à la structure hadronique des projectiles à des fractions d´impulsion très petites et, en même temps, à des échanges de quadri-impulsions relativement grands. Cette configuration permet donc de conduire des calculs perturbatifs qui nous autorisent à accéder à l´information de structure hadronique à très basse impulsion longitudinale. Le processus théoriquement le mieux compris dans des collisions hadroniques est la production des paires de dileptons, le processus Drell-Yan. Par contre, jusqu´à présent, il n´y a pas eu de mesure descendant jusqu´aux masses de 3 GeV/c² à un collisionneur de hadrons malgré la motivation théorique de tester les partons avec des fractions d´impulsion longitudinale faible. En effet, à des masses en dessous d´environ 30 GeV/c², des désintégrations semileptoniques de hadrons de saveurs lourdes commence à dominer la production des dileptons. Ce processus a occulté chaque tentative d´extraire la production des dileptons dans cette région cinématique.

Le premier but de la thèse est la première mesure de la production de dimuons Drell-Yan à des masses invariantes basses au LHC dans des collisions proton-proton qui vont être prises en 2024. Le mesure sera basée sur des techniques de suppression de bruits de fonds novatrices grâce à la géométrie à l´avant de LHCb. Dans une deuxième partie, la faisabilité de la mesure dans des collisions d´ions lourds sera investiguée dans les configurations présentes et futures du détecteur de LHCb.
Mesures de haute précision de reculs nucléaires à l’échelle de 100 eV pour les détecteurs cryogéniques

SL-DRF-24-0274

Domaine de recherche : Physique des particules
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire etudes et applications des reactions nucleaires (LEARN) (LEARN)

Saclay

Contact :

Loïc THULLIEZ

David LHUILLIER

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Loïc THULLIEZ
CEA - DRF/IRFU/DPhN/LEARN

0169087453

Directeur de thèse :

David LHUILLIER
CEA - DRF/IRFU/DPHN/LEARN

01 69 08 94 97

La méthode CRAB vise à calibrer de manière absolue les détecteurs cryogéniques utilisés dans les expériences de recherche de matière noire et de diffusion cohérente de neutrinos. Ces expériences ont en commun le fait que le signal recherché est un recul nucléaire de très basse énergie (quelque 100 eV) nécessitant des détecteurs avec une résolution de quelques eV et un seuil de O(10eV). Or jusqu’à présent il était très difficile de générer des reculs nucléaires d’énergie connue pour caractériser la réponse de ces détecteurs. L’idée principale de la méthode CRAB, détaillée ici [1,2], est d’induire une réaction de capture avec des neutrons thermiques (énergie de 25 meV) sur les noyaux constituant le détecteur cryogénique. Le noyau composé résultant a une énergie d’excitation bien connue, l’énergie de séparation d’un neutron, comprise entre 5 et 8 MeV selon les isotopes. Dans le cas où il se désexcite en émettant qu’un seul photon gamma, le noyau va reculer avec une énergie qui est aussi parfaitement connue car donnée par la cinématique à deux corps. Un pic de calibration, dans la gamme recherchée de quelques 100 eV, apparaît alors dans le spectre en énergie du détecteur cryogénique. Une première mesure réalisée, en 2022, avec un détecteur cryogénique en CaWO4 de l’expérience NUCLEUS (expérience de diffusion cohérente de neutrinos portée par TU-Munich et dans laquelle le CEA est fortement impliquée) a permis de valider la méthode [3].

Le travail de cette thèse s’inscrit dans la deuxième phase de ce projet qui consiste à réaliser des mesures de haute précision avec un faisceau de neutrons thermiques du réacteur TRIGA-Mark-II à Vienne (TU-Wien, Autriche). Deux approches complémentaires seront menées de front pour atteindre une haute précision : 1/ la configuration du détecteur cryogénique sera optimisée pour une très bonne résolution en énergie, 2/ de larges cristaux de BaF2 et de BGO seront placés autour du cryostat pour une détection en coïncidence du recul nucléaire dans le détecteur cryogénique et du rayon gamma qui a induit ce recul. Cette méthode de coïncidence réduira significativement le bruit de fond et permettra d’étendre la méthode CRAB à un plus large domaine d’énergie et aux matériaux constitutifs de la plupart des détecteurs cryogéniques. Nous attendons de ces mesures une caractérisation unique de la réponse des détecteurs cryogéniques, dans un domaine d’intérêt pour la recherche de la matière noire légère et la diffusion cohérente de neutrinos. La haute précision permettra également l’ouverture d’une fenêtre de sensibilité à des effets fins couplant de la physique nucléaire (temps de désexcitation du noyau) et de la physique du solide (temps de recul du noyau dans la matière, création de défauts cristallins lors du recul d’un noyau) [4].

L’étudiant(e) sera fortement impliqué dans tous les aspects de l’expérience : la simulation, l’installation sur site, l’analyse et l’interprétation des résultats obtenus.
Étude de la production des mesons Bc dans les collisions Pb-Pb à 5.36 TeV du Run 3 du LHC

SL-DRF-24-0364

Domaine de recherche : Physique des particules
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire plasma de quarks et gluons (LQGP) (LQGP)

Saclay

Contact :

Javier CASTILLO

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Javier CASTILLO
CEA - DRF/IRFU/DPhN/LQGP

+33 169087255

Directeur de thèse :

Javier CASTILLO
CEA - DRF/IRFU/DPhN/LQGP

+33 169087255

Labo : http://irfu.cea.fr/dphn/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=500

Voir aussi : https://alice-collaboration.web.cern.ch

Quelques micro-secondes après le Big Bang l’Univers se trouvait dans un état de plasma de quarks et de gluons (QGP). Cet état, prédît par la Chromodynamique Quantique, la théorie de l’interaction forte, est atteint pour des températures ou des densités d’énergie très élevées. Ces conditions sont réunies dans les collisions d’ions lourds ultra-relativistes au LHC au CERN.
Parmi les différentes observables du QGP, l’étude de la production d’hadrons contenant des quarks lourds (c ou b) et des quarkonia (états liés c-cbar ou b-bbar) est particulièrement pertinente pour comprendre les propriétés du QGP. En effet, les quarks lourds sont produits par collisions entre partons des noyaux incidents aux premiers instants de la collision, et subissent donc toute la dynamique de la collision.
Grâce aux mesures de production de J/psi (c-cbar) dans les collisions Pb-Pb lors des Runs 1 et 2 du LHC, la collaboration ALICE a mit en evidence le mécanisme de regeneration des quarkonias: quand le nombre initial de paires quark/anti-quark est élevé, et que les quarks lourds thermalisent dans le QGP, alors des nouveaux quarkonia peuvent être crées par le QGP par recombinaison de quarks lourds. D’autres mécanismes tels que la suppression par ecrantage de couleur affectent aussi la production des quarkonia. Les mesons Bc sont constitués d’un quark b et un antiquark c (et conjugué de charge). De ce fait, leur production dans des collisions proton-proton est largement défavorisé. Néanmoins, dans les collisions Pb-Pb, la production du Bc pourrait être largement augmenté grâce au mécanisme de regeneration.
Nous proposons d’étudier la production des mésons Bc dans les collisions Pb-Pb à une énergie dans le centre de masse de la collision par paire de nucleon (sqrt(sNN)) de 5.36 TeV au LHC avec les données du Run 3 (2022-2025). Le système de détection d’ALICE a été amélioré en vue des Runs 3 et 4 avec l’ajout d’un trajectographe à pixels en silicium (MFT) pour compléter le spectromètre à muons d’ALICE et une nouvelle électronique de lecture de ce dernier. Ces ameliorations permettront, d’une part, de profiter au maximum de l’augmentation en luminosité du LHC et ainsi de tripler en une seule année la quantité de données collectées pendant tout le Run 2 (2015-2018) du LHC et, d’autre part, de mesurer avec precision la position des vertex secondaires de décroissance des hadrons beaux. Les mésons Bc seront mesurés à grande rapidité en reconstruisant trois muons secondaires avec le spectromètre à muons et le MFT d’ALICE.
Dans un premier temps, le candidat contribuera à l’optimisation et l’evaluation des performances des algorithmes de matching entre le spectromètre à muons et le MFT, et de reconstruction des vertex secondaires. Dans un deuxième temps, le candidat étudiera le aux de production des mésons Bc dans les collisions Pb-Pb. Finalement, les résultats seront comparés à d’autres mesures expérimentales et à divers calculs théoriques.
Ce travail inclut la familiarisation de l’étudiant avec les outils de travail de la grille de calcul ainsi qu’avec les nouveaux codes de simulation, reconstruction et analyse de la collaboration ALICE.
Etude des noyaux en forme de poire dans les actinides avec le nouveau détecteur SEASON

SL-DRF-24-0312

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire études du noyau atomique (LENA) (LENA)

Saclay

Contact :

Damien THISSE

Marine VANDEBROUCK

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Damien THISSE
CEA - DRF/IRFU/DPhN


Directeur de thèse :

Marine VANDEBROUCK
CEA - DRF/IRFU/DPhN


Comprendre les limites d’existence du noyau, et notamment sa limite en masse, est un des axes de recherche majeurs de la physique nucléaire contemporaine. Dans cette région des noyaux lourds, les actinides déficients en neutrons présentent un intérêt particulier. En effet, des déformations octupolaires (forme de poire) prononcées sont prédites et ont même été observées dans certains noyaux. L’objectif de la thèse est d’étudier ces déformations octupolaires en utilisant le détecteur de nouvelle génération SEASON dont l'efficacité de détection et la résolution en énergie sont sans précédent pour ce type d'expérience. La thèse est centrée sur l'installation, le test, la prise de données et l'analyse des données d'une expérience qui sera réalisée en 2025 à l'Université de Jyväskylä. Lors de cette expérience, la réaction de fusion-évaporation induite par proton 232Th(p,X)Y permettra de peupler des actinides déficients en neutrons dont la spectroscopie de décroissance sera ensuite réalisée grâce à SEASON. La thèse s'effectuera en cotutelle avec l’Université de Jyväskylä. La thèse se divise en deux parties :
i) une période de 1 an à l'Université Jyväskylä au cours de laquelle aura lieu l'expérience
ii) les deux années suivantes au CEA Saclay seront dédiées à l'analyse des données et à la préparation du programme expérimental avec SEASON auprès du nouveau dispositif expérimental S3-LEB au GANIL-SPIRAL2
MODÉLISATION DES RÉACTIONS ANTI-IONS LÉGERS SUR NOYAU ATOMIQUE

SL-DRF-24-0347

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire etudes et applications des reactions nucleaires (LEARN) (LEARN)

Saclay

Contact :

Jean-Christophe DAVID

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Jean-Christophe DAVID
CEA - DRF/IRFU/DPhN/LEARN

0169087277

Directeur de thèse :

Jean-Christophe DAVID
CEA - DRF/IRFU/DPhN/LEARN

0169087277

Labo : https://irfu.cea.fr/dphn/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=2105

Les réactions anti-(p, n, d, t, 3He, 4He)-noyau sont à la fois riches d'enseignements et compliquées à étudier. Elles nécessitent, en plus de la connaissance des produits de la réaction antinucléon-nucléon, la prise en compte du milieu nucléaire, avec notamment les interactions dans l'état final.
Les réac)ons antiproton-noyau sont/seront utilisées/étudiées notamment à l’anneau décélérateur d’antiprotons (AD) du Cern et à l'installa)on FAIR en Allemagne pour comprendre le comportement de l’antima)ère. Les réactions avec des anti-ions légers (dbar, 3He-bar, par exemple) sont d’un intérêt plus récent, avec notamment l'expérience GAPS (General AntiParticle Spectrometer) qui vise à mesurer les flux de ces particules dans le rayonnement cosmique. L’idée est de mettre en évidence la matière noire, dont ces particules seraient des produits de décroissance, et dont la quantité mesurée pourraient ressortir « facilement » du bruit de fond cosmique.
Récemment les réactions antiproton-noyau ont été ajoutées au code de réactions nucléaires INCL (IntraNuclear Cascade Liège) développé au CEA (Irfu/DPhN) et celui est en cours d’implanta)on dans le code de transport Geant4. L’objectif de la thèse proposée est d’inclure maintenant les réactions anti-(d, t, 3He, 4He)-noyau dans le code INCL.
Propagation d'incertitudes dans un code de transport Monte-Carlo

SL-DRF-24-0367

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire etudes et applications des reactions nucleaires (LEARN) (LEARN)

Saclay

Contact :

Jean-Christophe DAVID

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Jean-Christophe DAVID
CEA - DRF/IRFU/DPhN/LEARN

0169087277

Directeur de thèse :

Jean-Christophe DAVID
CEA - DRF/IRFU/DPhN/LEARN

0169087277

Labo : https://irfu.cea.fr/dphn/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=2105

La modélisation des réactions nucléaires fait l'objet d'améliorations constantes depuis plusieurs décennies. C'est notamment le cas de notre code de cascade nucléaire INCL. Un projet ANR a été financé pour les quatre prochaines années (2024-2027) afin de travailler sur la question de l'estimation des incertitudes et des erreurs. Comme ce code est implanté dans le code de transport de particules Geant4, la prochaine étape est de propager ces incertitudes de INCL à Geant4. Une étude récente sur la propagation des incertitudes, appelée Transport Monte Carlo (TMC), a été réalisée. Cependant, cette étude ne traite que de la propagation des incertitudes liées aux paramètres du modèle, sans tenir compte des biais du modèle (liés aux hypothèses) et de leurs incertitudes, qui sont tous deux en dehors du modèle physique. Par conséquent, la propagation des biais et de leurs incertitudes, qui proviennent des modèles de collision Monte Carlo, est un territoire inexploré. L'objectif du projet de thèse proposé est donc de développer des méthodes pour ce type de propagation et d'étudier le fonctionnement et les caractéristiques de ces méthodes dans des scénarios schématiques. L'implémentation complète des méthodes développées dans un code de transport, tel que GEANT4, ne fait pas partie du champ d'application principal de la thèse, mais cela pourrait être possible si le temps le permet.

RECHERCHE DE LA DÉSINTÉGRATION NUCLÉAIRE EN DEUX PHOTONS

SL-DRF-24-0289

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire études du noyau atomique (LENA) (LENA)

Saclay

Contact :

Wolfram KORTEN

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Wolfram KORTEN
CEA - DRF/IRFU/DPhN/LENA

+33169084272

Directeur de thèse :

Wolfram KORTEN
CEA - DRF/IRFU/DPhN/LENA

+33169084272

Page perso : https://www.researchgate.net/profile/Wolfram_Korten

Labo : http://irfu.cea.fr/dphn/Phocea/Vie_des_labos/Ast/ast_sstheme.php?id_ast=293

Voir aussi : https://www.gsi.de/en/work/research/appamml/atomic_physics/experimental_facilities/esr.htm

La désexcitation nucléaire en deux photons, c.à.d. la décroissance par émission de deux rayons gamma, est un mode de désexcitation rare du noyau atomique, au cours duquel un noyau excité émet deux rayons gamma simultanément pour revenir à l’état fondamental. Les noyaux pair-pair ayant un premier état excité 0+ sont des cas favorables pour rechercher la décroissance double gamma puisque l’émission d’un seul rayon gamma est strictement interdite pour les transitions 0+ -> 0+ par conservation du moment angulaire. Cette décroissance présente toujours un très petit rapport d’embranchement (<1E-4) en comparaison avec les autres modes de désexcitation possibles, soit par l’émission d’électrons de conversion interne (ICE) soit la création de paires positron-électron (e+-e-) (IPC). Nous utiliserons donc une nouvelle technique pour rechercher la décroissance double gamma: l’étude de la désexcitation d’un état isomérique 0+ de basse énergie dans les ions nus, c.-à-d. entièrement épluchés de leurs électrons atomiques. L’idée de base de l’expérience est de produire, sélectionner et stocker les noyaux dans leur état isomérique 0+ dans l’anneau de stockage de l’installation GSI en Allemagne. Lorsque le noyau est entouré du cortège électronique l’état 0+ excité est un état isomérique à durée de vie assez courte, de l’ordre de quelques dizaines à quelques centaines de nanosecondes. Toutefois, aux énergies relativistes disponibles à GSI, tous les ions sont entièrement épluchés de leurs électrons atomiques et la désexcitation par ICE n’est donc pas possible. Si l’état d’intérêt est situé en dessous du seuil de création de paires, le processus IPC n’est pas possible non plus. Par conséquent, les noyaux nus sont piégés dans un état isomérique de longue durée de vie, qui ne peut se désintégrer que par émission de deux rayons gamma vers l’état fondamental. La désexcitation de l’isomère serait identifiée par spectroscopie de masse Schottky (SMS) à résolution temporelle. Cette méthode permet de distinguer l’isomère de l’état fondamental par la (très légère) différence de leur temps de révolution dans l’ESR, et d’observer la disparition du pic de l’isomère dans le spectre de masse avec un temps de décroissance caractéristique. Après une première expérience réussie qui a fait preuve de la décroissance double gamma dans l'isotope 72Ge une nouvelle expérience a été accepté par le comité d’expériences de GSI et son réalisation est prévu en 2024.
Variété de formes dans le noyau du 96Zr étudiée avec les spectrome`tres gamma AGATA et GRIFFIN

SL-DRF-24-0294

Domaine de recherche : Physique nucléaire
Laboratoire d'accueil :

Service de Physique Nucléaire (DPhN)

Laboratoire études du noyau atomique (LENA) (LENA)

Saclay

Contact :

Magdalena Zielinska

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Magdalena Zielinska
CEA - DRF/IRFU/DPhN/LENA

01 69 08 74 86

Directeur de thèse :

Magdalena Zielinska
CEA - DRF/IRFU/DPhN/LENA

01 69 08 74 86

Labo : https://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=483

Voir aussi : https://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast_technique.php?id_ast=790

Le sujet de la thèse porte sur l'étude expérimentale des propriétés macroscopiques et microscopiques du noyau du 96Zr. Récemment, l’observation d’un état déformé dans ce noyau magique a été explique par les calculs de la structure nucléaire en termes d'une réorganisation des couches nucléaires en fonction de leur remplissage par les protons et les neutrons. Selon ces calculs sophistiquées, le noyau du 96Zr présente une variété de formes ellipsoïdales à une faible énergie d'excitation, et il peut également prendre la forme de poire.
Nous étudierons ces formes variées en utilisant la puissante technique d'excitation coulombienne, qui est la méthode la plus directe pour déterminer la forme des noyaux dans leurs états excités. L'expérience sera réalisée à l'aide d'AGATA, un spectromètre gamma de nouvelle génération, constitué d'un grand nombre de cristaux de germanium finement segmentés, qui permet d'identifier chaque point d'interaction d'un rayon gamma a l’intérieur du détecteur puis, à l'aide du concept innovant du «gamma-ray tracking », permet de reconstruire les énergies de tous les rayons gamma émis et leurs angles d'émission avec une précision sans précédent. Une expérience complémentaire sera réalisée à TRIUMF (Vancouver, Canada) en utilisant le spectromètre le plus avancé au monde dédié aux mesures de désintégration bêta, appelé GRIFFIN. Ce projet fait partie d'un vaste programme expérimental de notre groupe sur l'évolution des formes de noyaux et leur coexistence.

 

Retour en haut