06 décembre 2017

Depuis plus de 10 ans maintenant, les physiciens et ingénieurs de l’Irfu ont développé à Saclay l’appareillage nécessaire pour l’expérience GBAR, conçue pour tester le comportement de l’antimatière sous gravité terrestre. Une étape importante vient d’être franchie avec le montage au Cern d’une nouvelle source de positons utilisant sur un linac à électrons, et le transport au Cern du système de piégeage des positons construit à Saclay.

La nouvelle source a produit ses premiers positons le 17 novembre 2017. L’installation des pièges est en cours, pour être opérationnels lors de l’arrivée des antiprotons, prévue pour le printemps 2018.

06 octobre 2017

Le consortium CTA (Cherenkov Telescope Array), qui regroupe 1300 scientifiques de 32 pays dans le monde a publié fin septembre le recueil de ses objectifs scientifiques, un document de plus de 200 pages, résultat de plusieurs années de travail auquel ont contribué des chercheurs de l’Institut de recherche sur les lois fondamentales de l’Univers (Irfu) du CEA.

A l'Irfu, le projet compte une quinzaine de physiciens et d'astrophysiciens du département de physique des particules (Irfu/DPhP) et du département d’astrophysique (Irfu/DAp). Leurs recherches se concentrent sur les phénomènes galactiques, la matière noire, les études de physique fondamentale et l’étude des phénomènes transitoires de l’Univers, des sujets abordés aujourd’hui grâce à leur implication dans les instruments H.E.S.S., Fermi, Integral, et XMM-Newton, pour n’en citer que quelques-uns.

L’observatoire CTA est sur le point de transformer notre vision du ciel à très haute énergie en détectant la lumière Tcherenkov produite par l’interaction des rayons gamma dans l’atmosphère. Afin de couvrir la totalité de la voute céleste, deux réseaux sont en cours d’installation respectivement sur le plateau d’Armazones au Chili et sur l’Ile de la Palma (archipel des Canaries). Ils comporteront au total une centaine de télescopes qui permettront d’étudier les phénomènes cataclysmiques de l’Univers, de sonder la matière soumise à des conditions extrêmes, et d’explorer les frontières de la physique, avec des performances dix fois supérieures aux instruments existants.

19 octobre 2017

Pour la première fois, les expériences Atlas et CMS cosignent un article, soumis à la revue JHEP, sur la physique du quark top. Ce travail collaboratif, dont les physiciens de l’Irfu ont été responsables pour la partie Atlas, consiste à combiner les mesures des deux expériences de ce qu’on appelle l’asymétrie de charge dans la production des paires de quarks top-antitop, Ac. En réduisant significativement l’erreur sur la mesure finale, ce travail permet de tester le phénomène subtil d’asymétrie prédit par le modèle standard de la physique des particules et l’éventuelle présence ténue de nouvelle physique.

21 novembre 2017

Sous la coupole du palais de l'Institut de France de l’Académie des sciences, une cérémonie de remise des prix a eu lieu mardi 21 novembre. Trois chercheurs de l'Irfu ont été récompensés pour leur travaux de premier plan, dans le domaine de la cosmologie pour Nathalie Palanque-Delabrouille (DPhP) et David Elbaz (DAp), et sur les propriétés des poussières et du gaz interstellaire dans l’Univers proche pour Suzanne Madden (DAp).

La compréhension de notre Univers soulève des questions fondamentales auxquelles théorie et observations tentent de répondre, et ouvre la porte à de nouveaux champs d’exploration, comme celui récent des ondes gravitationnelles récompensé par le Prix Nobel de physique 2017.
La plus emblématique énigme de la cosmologie moderne est celle de la composante sombre de notre Univers. Seuls 5% de l’Univers sont constitués de matière connue (dite baryonique) et de rayonnement.  95% de l’Univers sont de nature inconnue: la matière noire (25%), détectée par ses effets gravitationnels à toutes les échelles, et l’énergie sombre (70%), qui agit comme une pression négative s’opposant à la contraction gravitationnelle de l’Univers sous l’effet de la matière. 

Plusieurs sondes observationnelles complémentaires permettent d’enquêter de façon approfondie sur ces composantes sombres, d’une part en caractérisant leurs propriétés, et d’autre part en remontant le cours de l’histoire de l’Univers et de la formation des premières structures - des étoiles aux galaxies et amas de galaxies. Le CEA joue un rôle clé en contribuant à ces programmes observationnels ambitieux, ainsi qu’à la réalisation des instruments au sol et spatiaux les permettant. Trois de ses chercheurs sont récompensés pour leur travaux de premier plan; voici leurs portraits.


10 juillet 2017

Plusieurs décennies après sa découverte, la nature de la matière noire reste une énigme. Récemment, des observations astrophysiques ont motivé de nouveaux modèles cosmologiques dits "matière noire tiède" et "matière noire ultra-légère", pour expliquer ses propriétés. Les spectres des quasars mesurés en particulier par les relevés BOSS auprès du télescope Sloan et XQ100 auprès du VLT ont permis aux chercheurs du DPhP de les tester. Leurs observations favorisent l'hypothèse d'une matière noire froide standard, et placent parmi les contraintes les plus fortes sur les masses de ces particules.

 

Les observations cosmologiques et astrophysiques démontrent l'existence d'une matière noire, source principale des forces de gravité qui produisent et soutiennent les grandes structures de l'univers. Malgré plusieurs décennies d'investigations, la nature de cette matière noire reste en revanche inconnue. En particulier aucune trace de particules de type WIMPs, longtemps évoquées, n'a été trouvée à ce jour que ce soit au LHC, dans les expériences de détection dite directe comme EDELWEISS, ou indirecte comme HESS. D'autres modèles de matière noire font donc l'objet d'attentions croissantes.

 

13 juin 2017

La première carte de distribution spatiale des structures de l’univers d’aujourd’hui à plus de 10 milliards d’années vient d’être révélée par les astronomes du programme Sloan Digital Sky Survey (SDSS). Pour remonter à cet âge lointain de l’Univers, les physiciens ont utilisé les sources les plus violentes de l’Univers : les quasars. Ils représentent les objets les plus lumineux et témoignent d'un lointain passé où l'Univers commençait à peine à se structurer après le Big Bang.
A partir de cette nouvelle carte, les chercheurs ont mesuré pour la 1ère fois les distances entre les structures de l’Univers tel qu’il était il y a plus de 6 milliards d’années. Les groupes français du CEA et du CNRS ont eu un rôle majeur dans cette mesure que ce soit concernant la sélection des quasars mais aussi l’analyse de près de 150 000 sources. Les observations continuent mais les résultats de cette nouvelle étude après 2 ans de prise de données confirment déjà le modèle standard de la cosmologie.

30 janvier 2017

L’instrument Desi (Dark Energy Spectroscopic Instrument) analysera la lumière émise par 35 millions de galaxies et quasars à plusieurs moments du passé de l’Univers et jusqu’à 11 milliards d’année, pour mieux cerner l’énergie noire. Son passage en phase de construction en 2016 couronne plusieurs années de recherche et développement qui ont abouti à un design solide et une stratégie d’observation crédible. L’Irfu, partenaire du projet depuis la première heure, y a tenu toute sa place. Retour sur une année qui a vu le projet devenir réalité.

Une nouvelle phase commence pour DESI

La phase de construction de DESI a été lancée l’été dernier après approbation par le département de l’énergie américain (DOE). Son installation auprès du télescope Mayall de 4 m (Fig. 1) situé à l’observatoire national Kitt Peak en Arizona commencera en 2018 avec l’arrivée du correcteur de champ.
 
La campagne d’observations, portant sur un tiers du ciel, débutera en 2019 et durera 5 ans. Elle devrait produire 10 fois plus de données que le projet précédent, BOSS (Baryon Oscillation Spectroscopic Survey) achevé il y a deux ans. Cette dernière phase d’approbation par le DOE permet de lancer la construction des pièces maîtresses de l’instrument. A savoir, les 5000 robots positionneurs de fibres (Fig. 2) qui permettront de pointer précisément les objets dont on veut capter la lumière - galaxies, quasars, étoiles - et les spectrographes alimentés par les fibres optiques qui analyseront la lumière recueillie en la décomposant en multiples longueurs d’ondes. 
18 janvier 2017

L’homogénéité de l’Univers est l’un des fondements de la cosmologie. Des chercheurs de l’Irfu ont réalisé une cartographie de l’Univers en 3D grâce au relevé de quasars de SDSS III (Sloan Digital Sky Survey). Ils ont ainsi pu vérifier cette hypothèse pour des échelles plus grandes que le milliard d’années-lumière. Cette étude n’est pas un simple test de cohérence, contrairement aux précédentes, c’est-à-dire qu’elle ne repose pas au départ de façon implicite sur l’homogénéité pour la démontrer à la fin. Elle a été publiée dans Journal of Cosmology and Astroparticle Physics, Volume 2016, November 2016.

 

Le principe cosmologique

La cosmologie se fonde sur le principe cosmologique, qui stipule que l’Univers est isotrope, le même dans toutes les directions, et homogène, le même en tout point. Mais, direz vous, quand j’observe le ciel à l’œil nu, il ne m’apparaît pas isotrope, les étoiles se regroupent dans la voie lactée.  L’Univers est effectivement anisotrope à petite échelle, mais à une échelle de l’ordre du milliard d’années-lumière il serait isotrope et homogène, comme illustré sur la figure 1. Mais en est-on sûr ?

03 août 2017

La collaboration internationale T2K, dans laquelle l’Irfu est fortement impliqué, annonce le 4 août 2017 de nouvelles indications d'une violation de la symétrie entre les neutrinos et les antineutrinos. T2K a analysé les données recueillies depuis 2010 jusqu'en 2017 : leurs nouveaux résultats, combinés avec les mesures d'oscillations de neutrinos de réacteurs, excluent que les neutrinos et les antineutrinos aient la même probabilité d'oscillations de saveur avec un niveau de confiance de 95% (2 écarts-type). Ce qui revient à dire qu’il y a 1 chance sur 20 que cette violation soit due à une fluctuation statistique. Après des améliorations sur le détecteur proche, en grande partie conçues et réalisées par l’Irfu, une nouvelle phase de prise de données (T2K-2) est prévue de 2021 à 2026, qui pourrait établir la violation de la symétrie CP à 3 écarts-type (99,7% de niveau de confiance).

 

 

02 août 2017

Une des grandes questions en physique des particules est l’existence ou non d’une différence de comportement entre matière et antimatière. De grandes expériences sur faisceau de neutrinos testent cette violation de symétrie en observant leurs oscillations sur de très longues distances. Pour valider la nouvelle technologie de ces futures expériences, des prototypes de plus faibles volumes sont construits.

L'expérience WA105 au CERN, à laquelle participe l’Irfu, a observé en juin 2017 les premiers signaux de rayons cosmiques dans un détecteur à argon liquide de nouvelle génération. Ce prototype est une chambre à projection temporelle à argon liquide avec phase gazeuse permettant l’observation tridimensionnelle des produits d’interaction des neutrinos. Ce premier prototype (3x1x1 m3, 25 t d’argon liquide) va permettre de valider un certain nombre de choix techniques qui seront appliqués au démonstrateur WA105 de 300 t d’argon liquide (6x6x6 m3) qui prendra des données en 2018 avec un faisceau du Cern. La validation de cette nouvelle technologie est cruciale pour les futurs détecteurs (60x12x12 m3, 10 kt) de la prochaine expérience d'oscillation de neutrinos DUNE aux États-Unis dont le démarrage est prévu en 2026 et qui a démarré en juillet 2017 la construction de son laboratoire souterrain.

26 juin 2017

Au bout de quatre ans de recherche et développement, l’équipe du projet LUMINEU, préparant CUPID, le futur de la traque de la désintégration double beta sans émission de neutrino (0νββ) avec des bolomètres, élit le molybdate de lithium pour un démonstrateur. En 2016, pas moins de quatre publications décisives impliquant des chercheurs de l’Irfu couronnent ce travail et éclairent la voie à suivre.

07 juillet 2017

Dans le domaine de l'imagerie médicale, une équipe de l'Irfu s'est lancé un défi : imager l'activité du cerveau avec une précision d'1 mm3. Son nom : CaLIPSO. Une technologie innovante à double-détection : à la fois la lumière et les électrons. Pour cela, une série de verrous technologiques doit être levée. Et l'une de ces étapes cruciales vient d'être franchie. Il s'agit de mettre en œuvre la chaîne entière d'ultra-purification du liquide de détection.

 

 

09 novembre 2017

La collaboration Atlas a présenté au Cern, le 24 octobre 2017, des preuves de la production de bosons de Higgs en association avec une paire de quarks top et antitop, dans les données enregistrées en 2015 et 2016 à 13 TeV d’énergie de collision proton-proton. L’observation de ce processus rare, objet de recherches menées au sein du groupe « ttH », orchestré par un physicien de l’Irfu/DPhP, ouvre des perspectives quant à l’étude du mécanisme de Higgs via la mesure du couplage du quark top au boson de Higgs.

19 octobre 2017

Pour la première fois, les expériences Atlas et CMS cosignent un article, soumis à la revue JHEP, sur la physique du quark top. Ce travail collaboratif, dont les physiciens de l’Irfu ont été responsables pour la partie Atlas, consiste à combiner les mesures des deux expériences de ce qu’on appelle l’asymétrie de charge dans la production des paires de quarks top-antitop, Ac. En réduisant significativement l’erreur sur la mesure finale, ce travail permet de tester le phénomène subtil d’asymétrie prédit par le modèle standard de la physique des particules et l’éventuelle présence ténue de nouvelle physique.

16 août 2017

Des physiciens de l'expérience ATLAS, au CERN, ont observé le premier signe direct de la diffusion lumière-lumière à haute énergie, un processus très rare dans lequel deux photons (des particules de lumière) interagissent et changent de direction. Le résultat publié le 14 aout dans la revue Nature Physics confirme l'une des plus anciennes prédictions de l'électrodynamique quantique.

Les physiciens d'ATLAS vont continuer à étudier la diffusion lumière-lumière pendant la prochaine exploitation du LHC avec ions lourds, prévue pour 2018. Avec davantage de données, la précision du résultat sera encore meilleure, ce qui pourrait ouvrir de nouvelles perspectives pour les études sur la nouvelle physique

en savoir plus:

février 2017: le fait marquant Irfu de février 2017

14 aout 2017: le communique de presse du CERN

 

contact Irfu: Laurent SCHOEFFEL

07 juillet 2017

Du 5 au 12 juillet 2017, la communauté mondiale de physique des particules s’est réunie à Venise à l’occasion de la conférence EPS2017, occasion pour toutes les expériences LHC de présenter les  résultats  issus de l’exploitation des données fournies par le LHC à 13 TeV (de 2015 à 2016). Des physiciens du DPhP, experts en recherche d’hypothétiques particules de type « boson de Higgs » mais plus massifs, ont contribué aux résultats présentés. Leurs analyses nouvelles permettent d’améliorer la sensibilité aux Higgs lourds.

 

 

08 février 2017

La réaction à 4 photons :  γ+γ→γ+γ est théoriquement possible comme prédit dès 1936,  mais cette réaction a toujours été inaccessible malgré les dizaines de tentatives expérimentales. L’intérêt de mesurer son taux de réaction est qu’il est lié aux propriétés du vide quantique. C’est dans ce contexte que l’expérience Atlas a annoncé en 2016 sa première observation, obtenue avec des données enregistrées fin 2015 correspondant à environ 4 milliards de collisions de physique (toutes réactions confondues) en ions plomb contre plomb à 5 TeV. Un physicien de l’Irfu/SPP a dirigé l’équipe qui a réalisé cette mesure, dont la publication vient d'être soumise à Nature Physics.

 

 

Retour en haut