The EUPRAXIA project has just completed its design study phase with the delivery of the Conceptual Design Report (CDR) at the end of 2019. The strong involvement of IRFU, particularly in the field of particle beam physics, has made it possible to show that solutions exist for the realization of a plasma wakefield accelerator, with a beam quality approaching that of conventional accelerators.
Detailed studies of the physical mechanisms involved have efficiently guided the numerical simulations, each lasting more than 10 hours on 2048 computing nodes, to demonstrate that all the objectives on the output beam can be achieved with a plasma of 30 cm long, 1.1017 cm-3 electronic density and a laser of 400 terawatts power, 50 joules energy. Innovative methods have been developed for accelerating and driving the beam through the two plasma stages to the end user without degrading the beam. A first analysis of error tolerances allowed to identify the most sensitive components to which particular care should be taken during the fabrication and implementation.

After more than 5 years of development, including 6 months of integration work of the 12,000 separate components to a complete cryomodule, the CEA-Irfu has just validated the technology of this complex system that reached the nominal ESS accelerating field in the 4 superconducting accelerating cavities.
At the limits of technology, this is the first time that such an intense accelerating field, maintained over such long pulse durations and with such high RF power, has been measured in superconducting cavities installed in a complete cryomodule.
This key step makes it possible to start the production phase of the 30 cryomodules that France is to deliver to the ESS research infrastructure, which will be operational in Sweden in 2023. This serial integration will begin in January 2019 under the supervision of Irfu with the contribution of the company B&S France and should be completed in 2022.

 

 

Retour en haut