Highlights 2010

December 2010

The Double Chooz collaboration recently completed its neutrino detector which will see anti-neutrinos coming from the Chooz nuclear power plant in the French Ardennes. The experiment is now ready to take data in order to measure fundamental neutrino properties with important consequences for particle and astro-particle physics.
At a meeting in Brussels of the NUPECC Committee(1) on December 9, the researchers presented their long term plan for maintaining the leading position currently enjoyed by European institutions in the field of nuclear physics.
The first lead-lead collision results have been published
After almost a year collecting data from proton-proton collisions, the LHC at CERN began the injection of lead ions at the beginning of November, with the first collisions obtained on November 8. The energy in the nucleon-nucleon center of mass is 2.76 TeV, around ten times greater than that achieved previously by the RHIC in Brookhaven USA.

November 2010

A team of physicists, engineers and technicians from IRFU are developing a new generation of MicroMegas trackers. The planned Compass II experiment at CERN, together with the Clas12 experiment at the Jefferson Lab, will impose new operational constraints preventing the current generation of trackers from working with nominal performance.

October 2010

    The instrument known as MUSETT1 detected its first heavy nuclei during a commissioning experiment that took place in early April 2010 at the GANIL2 accelerator in Caen. MUSETT was built for identifying very heavy elements: transfermium, which are the elements beyond fermium (Z=100).

July 2010

   The pion, predicted by Yukawa in 1935 and discovered in 1947, was the first of a family of particles called mesons: a family that has continued to grow ever since. Ordinary mesons consist of a quark and an antiquark. The theory of strong interaction also predicts the existence of more complex mesons, called ‘exotic' mesons.

February 2010

The CHyMENE project (Cible d'Hydrogène Mince pour l'Etude des Noyaux Exotiques -Thin hydrogen target for the study of exotic nuclei) has the ambitious goal of producing a thin target of pure hydrogen, without using a container, suitable for experiments using the low-energy heavy ion beam planned for SPIRAL2.
A company from the Vosges Department in France, NEOTEC, received the 2009 "Outstanding Implementations" award, at the International MIDEST Exhibition attended by the Industry Minister, Christian Estrosi, for their production of very special chambers.


Retour en haut