Faits marquants 2024

17 janvier 2024

Pour dévoiler ce mystère, plusieurs équipes aux compétences diversifiées du Département d’Astrophysique ont dû se réunir, car l’architecture qui unie l’étoile à sa planète est très complexe. Il fallait fusionner une compréhension fine de la physique stellaire et planétaire, en explorant leurs interactions, et avoir une connaissance approfondie des observations du satellite Kepler (NASA) pour en être capable d’en déchiffrer les données. 

L’étude démontre que la rareté observée semble découler non pas d'un biais observationnel, mais plutôt de causes physiques. Les effets de marée et le magnétisme suffisent à expliquer qualitativement et quantitativement la migration des planètes proches autour des étoiles à rotation rapide. De surcroît, cette migration semble être dépendante du type spectral (qui dépend fondamentalement de la masse) de l’étoile. Bien que ces résultats soient prometteurs, il est néanmoins nécessaire d’élargir la taille de l’échantillon pour mieux contraindre la pénurie et mieux comprendre les mécanismes en jeu. En particulier, cette étude souligne l’importance de considérer le type spectral des étoiles (leurs masses) si l’on veut correctement modéliser les interactions étoile-planète.

Ce travail fait l’objet d’une publication dans la revue Astronomy & Astrophysics.

25 janvier 2024
Le Comité des Programmes Scientifiques de l'ESA a adopté la mission LISA, donnant le feu vert pour la construction de l’instrument et des satellites. LISA observera pour la première fois l’Univers par les ondes gravitationnelles depuis l’espace.

LISA (Laser Interferometer Space Antenna), la mission large de l’Agence Spatiale Européenne qui explorera l’Univers en observant les nombreuses sources d’ondes gravitationnelles a été adoptée jeudi 25 janvier par le Comité des Programmes Scientifiques de l’ESA, c’est-à-dire que le concept et la technologie sont reconnus comme suffisamment avancés pour que la construction de l’instrument et des satellites puissent débuter. Le lancement est prévu pour 2035. 

Cette mission révolutionnera l’astrophysique, la cosmologie et la physique fondamentale grâce à 3 satellites orbitant autour du Soleil formant un triangle de 2,5 millions de km de côté pour détecter les ondes gravitationnelles émettant dans la bande du millihertz telles que les systèmes binaires de trous noirs supermassifs. Ces 3 satellites s’échangent des faisceaux laser pour détecter par interférométrie des variations de distance de l’ordre de la dizaine de picomètres induites par les ondes gravitationnelles. L’Irfu est fortement impliquée dans le projet LISA et contribue à la fois sur l’instrument, l’analyse de données et la science des sources. Elle est en charge du simulateur de masses de référence et de la structure stable pour le test du cœur interférométrique, de l’analyse des alertes, d’une contribution sur l’analyse globale et du co-pilotage du projet pour la France. Elle prépare également l’exploitation scientifique et en particulier les tests associés à la physique fondamentale, l’étude de l’Univers primordial et l’étude des champs magnétiques dans les systèmes binaires de naines blanches.

12 février 2024

Avec plus de 5 000 scientifiques, ingénieurs, techniciens, administrateurs et étudiants, CMS est l'une des plus grandes collaborations scientifiques au monde. Comptant parmi ses rangs des membres provenant de plus de 240 instituts et universités, répartis dans près de 50 pays à travers le monde, cette collaboration exploite les données fournies par l'experience CMS, l'un des deux détecteurs généralistes géants installés le long de la circonférence du LHC, le grand collisionneur de hadrons du CERN.

Gautier Hamel de Monchenault, physicien au département de physique des particules du CEA-Irfu, a été élu lundi 12 février 2024 dixième porte-parole de la collaboration CMS au CERN et exercera cette fonction prestigieuse du 1er septembre 2024 au 31 août 2026Il sera le 10ème porte parole de la collaboration CMS et le deuxième porte-parole français à diriger l'une des quatre expériences du LHC.

Ces années intenses verront la fin de la troisième période de prise de données du LHC tel que nous le connaissons, et le début de l’installation des mises à jour du détecteur en vue des données du HL-LHC, à haute luminosité, ainsi que la mise à jour de la stratégie européenne en physique des particules.

18 janvier 2024

Le télescope spatial James Webb a réalisé un nouveau portrait de l'atmosphère de l'exoplanète WASP-39b, une "Saturne chaude" située à quelque 700 années-lumière. Après les premières observations en proche infrarouge en 2022, qui ont permis de révéler pour la première fois la présence de dioxyde de soufre (SO2) dans l'atmosphère d'une exoplanète, elle a été de nouveau observée en 2023, mais cette fois en infrarouge lointain, à l'aide du spectromètre MIRI. Cette nouvelle observation a permis à l'équipe de chercheurs internationale, comprenant le Département d'Astrophysique de Saclay, de confirmer la présence de cette molécule dans l'atmosphère de WASP-39b et de contraindre son abondance. Cette étude récente démontre que la photochimie façonne l'atmosphère de WASP-39b sur une large plage de longueurs d'onde.

Cette étude a été publiée dans la préstigieuse revue Nature

11 janvier 2024
Un des 4 instruments du JWST et le seul fonctionnant dans l'infrarouge moyen, MIRI fourni des images spectaculaires et des données redéfinissant notre compréhension du cosmos

La Royal Astronomical Society a annoncé aujourd'hui que leur prestigieux Group Achievement Award a été décerné à l'équipe internationale qui a développé l'instrument Mid InfraRed (MIRI) pour le télescope spatial James Webb (JWST). Ce prix récompense l'impressionnante réussite de l'équipe, qui a su mener à bien un projet international aussi long et complexe, ainsi que permettre des résultats scientifiques impressionnants émergeant de MIRI. 

MIRI est le fruit d’une collaboration entre l’Europe et les Etats-Unis d’Amérique (figure 2). L’équipe qui a conçu et développé l’instrument MIRI du JWST, a été dirigé par Gillian Wright du Royal Observatory of Edimburgh (ROE) et de George Rieke de l’Université d’Arizona. MIRI, seul instrument du télescope spatial à travailler dans l’infrarouge moyen, entre 5 et 28 microns, est formé d’un spectrographe, MRS (MIRI medium-resolution spectrometer), et d’un imageur, MIRIm (figure 1). Sous l'égide du CNES, le département d'astrophysique du CEA-Irfu, fort d'une expertise étendue dans le domaine de l'infrarouge moyen depuis les années 1980, a assuré la maîtrise d’œuvre de MIRIm. 

08 février 2024
Les noyaux exotiques très riches en neutrons : un laboratoire pour les interactions nucléaires

Pour la première fois, une expérience a fourni des observations clés sur la spectroscopie des noyaux non liés d’oxygène (nombre de protons Z = 8) riches en neutrons, l’oxygène 28 (N = 20) et son isotope voisin à N = 19, l'oxygène 27.  Ils ont été produits dans des réactions à haute énergie et observés par la détection directe de leurs produits de décroissance, 24O et trois ou quatre neutrons. L’étude montre qu’il est possible de contraindre les paramètres des interactions ab initio à partir des différences en énergie des états observés par rapport au dernier isotope lié – l’24O (N = 16). Ces résultats inédits ont été publiés dans la revue Nature [Nat23]. 

Du fait de la complexité de l’étude de noyaux non liés, un dispositif exceptionnel a été mis en œuvre auprès de l’installation de faisceaux d'ions radioactifs la plus performante au monde : RIBF au Japon. Les données ont été obtenues par une collaboration internationale (Samurai21) d'une centaine de physiciens (36 laboratoires) notamment une équipe* de physiciens de l'Irfu qui a mis en opération un détecteur-clé pour les mesures, Minos. L'expérience réalisée sur l'aire Samurai de l'installation RIBF (Radioactive Ion Beam Factory) de RIKEN au Japon était pilotée par les groupes de physiciens de Titech (Tokyo Institute of Technology) et les équipes de RIKEN-RIBF. 

02 février 2024

La collaboration T2K a annoncé le 17 janvier le lancement de la seconde phase de son expérience, comme indiqué dans un communiqué de presse. Cette phase exploitera une mise à niveau du faisceau, dont la puissance nominale a été portée de 450 kW à 710 kW, avec pour objectif d’atteindre 1.2 MW d'ici 2027. Une version améliorée du détecteur proche ND280 de l’expérience est également mise en œuvre, intégrant notamment de nouvelles chambres à projection temporelle utilisant la technologie des Micromégas résistives conçues et développées par les équipes de l’Irfu. L'objectif de cette deuxième phase sera de recueillir d’ici 2027 plus du double de la statistique neutrino collectée pendant la phase précédente, ainsi que de réduire d’un facteur deux l’incertitude sur le taux de neutrinos produits. Le but est d’atteindre une significance de 3σ sur la violation de la symétrie Charge-Parité (CP), en cas de violation maximale de CP, comme le suggèrent les résultats de la première phase de T2K. La découverte d'une violation de la symétrie CP dans le secteur leptonique pourrait expliquer l'un des mystères les plus fondamentaux de la physique moderne : l'asymétrie matière-antimatière observée dans l'Univers.

 

Retour en haut