A Nearby Galaxy Perspective on Interstellar Dust Properties and their Evolution

Habilitation à Diriger des Recherches (HDR; Université Paris-Saclay, 2022)

Frédéric GALLIANO
 
Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, 91191, Gif-sur-Yvette, France

PDF version of this document

Abstract
Introduction
 Interstellar Dust: A Key To Understanding Galaxy Evolution
 The Relevance of Nearby Galaxies
 Scope of the Manuscript
1 Propaedeutics in Dust Physics
 1.1 The Make-Up of Solids
  1.1.1 Atomic Structure
  1.1.2 Molecular Bonding
  1.1.3 The Solid State
  1.1.4 Interstellar Dust Candidates
 1.2 The Interaction of Light with Solids
  1.2.1 Bonds as Harmonic Oscillators
  1.2.2 Grain Optical Properties
  1.2.3 Heat Capacities
  1.2.4 Heating and Cooling
2 Dust Observables and Models
 2.1 A Brief History of Interstellar Dust Studies
  2.1.1 The Challenges of Observing Interstellar Regions
  2.1.2 Chronology of the Main Breakthroughs
 2.2 The Current Empirical Constraints
  2.2.1 Extinction
  2.2.2 Emission
  2.2.3 Elemental Abundances in Grains
  2.2.4 Direct Measures
 2.3 State-of-the-Art Dust Models
  2.3.1 Composition and Size Distributions of Different Models
  2.3.2 The Model Properties
  2.3.3 Some Useful Quantities
3 The Grain Properties of Nearby Galaxies
 3.1 Spectral Energy Distribution Modeling
  3.1.1 Radiative Transfer
  3.1.2 Approximate Treatments of the Mixing of Physical Conditions
  3.1.3 Application to Nearby Galaxies
 3.2 Studies Focussing on Specific Spectral Domains
  3.2.1 Scrutinizing Mid-IR Spectra
  3.2.2 Long-Wavelength Properties
 3.3 Dust in Relation with the Gaseous and Stellar Contents
  3.3.1 The Phases of the ISM
  3.3.2 Dust as a Diagnostic Tool
4 Modeling Cosmic Dust Evolution
 4.1 Stellar Evolution
  4.1.1 The Fate of Stars of Different Masses
  4.1.2 Elemental and Dust Yields
 4.2 Dust Evolution Processes in the ISM
  4.2.1 Grain Formation and Transformation
  4.2.2 Grain Destruction
 4.3 Cosmic Dust Evolution
  4.3.1 Constraining the Dust Build-Up in Galaxies
  4.3.2 Evolution of the Aromatic Feature Carriers
5 Methodological Effort and Epistemological Reflection
 5.1 Understanding the Opposition between Bayesians and Frequentists
  5.1.1 Two Conceptions of Probability and Uncertainty
  5.1.2 Comparison of the Two Approaches on Simple Cases
  5.1.3 Numerical Methods to Solve Bayesian Problems
  5.1.4 Decision Making and Limitations of the Frequentist Approach
 5.2 Bayesianism, an Alternative to Popper’s Scientific Method
  5.2.1 Bayes Formula Throughout History
  5.2.2 Bayesian and Popperian Epistemologies
 5.3 Relevance for Interstellar Dust Studies
  5.3.1 The Particularities of Interstellar Dust Studies
  5.3.2 The Principles of Hierarchical Bayesian Inference
  5.3.3 Hierarchical Bayesian Models for ISD Studies
6 Conclusion and Prospective
 6.1 What Have We Learned About ISD in the Past Decade?
  6.1.1 About Dust Properties
  6.1.2 About Dust Evolution
 6.2 What Are the Open Questions for the Next Decade?
  6.2.1 Extragalactic Dust
  6.2.2 Dust Evolution Modeling
  6.2.3 Dusty Epiphenomena
  6.2.4 The Need for a New FIR Observatory
  6.2.5 The Public Image of Interstellar Dust
 6.3 Current Future Projects
  6.3.1 The Modelosaur Approach
  6.3.2 Out-of-the-Box Idea Bin
A List of Acronyms
 A.1 General Acronyms
 A.2 Telescope and Instrument Acronyms
 A.3 Model and Project Acronyms
 A.4 Denomination of the Main Spectral Windows
B Astronomers and Units
 B.1 Brief History of Unit Systems
 B.2 Working with Units
C Useful Formulae
 C.1 3D Quantities and Volume Integrals
  C.1.1 Differential Operators
  C.1.2 Vectorial Analysis
  C.1.3 Integral Theorems
  C.1.4 Dust Heating and Cooling: Two Ways of Slicing the Pis
 C.2 Statistics
  C.2.1 General Formulae
  C.2.2 Useful Probability Distributions
  C.2.3 Drawing random variables from an arbitrary distribution
 C.3 Trigonometry
  C.3.1 Transformations
  C.3.2 Addition
  C.3.3 Linearization
Acknowledgements
List of Figures
List of Tables
Bibliography

[next]