Au sein du CEA-IRFU (Institut de Recherche sur les lois Fondamentales de l'Univers), le DACM (Département des Accélérateurs, de Cryogénie et de Magnétisme) est un acteur majeur au niveau national et international dans le domaine des accélérateurs de particules. Il a activement participé à la plupart des projets d'accélérateurs des plus grands centres de recherche du monde ces dernières décennies. Un pan important de ces activités concerne la conception d'accélérateurs, linéaires ou circulaires, pour la physique des hautes énergies ou toute autre application scientifique. Le domaine de la physique des accélérateurs, nécessite des connaissances approfondies en dynamique des faisceaux de particules. Dans cette discipline, le DACM est aussi impliqué dans des nouvelles techniques d'accélération de type laser-plasma, avec l’objectif de concevoir des accélérateurs laser-plasma (ALP) par effet de sillage qui permettront de réduire significativement la taille et les coûts des accélérateurs du futur. Des collaborations avec des partenaires internationaux (EuPRAXIA, CERN-AWAKE) ou nationaux (CNRS-LPGP, CNRS-IJCLab) ont été engagées pour la conception d'ALP dans des configurations et applications variées. Le DACM est actuellement impliqué dans la conception d’un ALP fiable et compacte qui doit servir de source d’électrons pour la collaboration AWAKE. Un tel accélérateur serait une première mondiale. Afin de prouver sa viabilité, l’ALP doit générer des faisceaux reproductibles de haute qualité. Des optimisations physiques et numériques détaillées, de l'injection jusqu'à l'utilisateur final vont devoir être mises en œuvre. Le (la) candidat(e) sera aussi impliqué dans les autres projets d’ALP du DACM.
La thèse portera sur l'étude physique et numérique des sections d'accélération plasma et des lignes de transfert assurant le transport du faisceau entre les différentes sections accélératrices et vers l'utilisateur final. Le cœur des études portera sur le contrôle de la qualité du faisceau de particules (caractéristiques de taille, de divergence, de dispersion en énergie, …) qui résulte de l'interaction laser-plasma et des champs électromagnétiques appliqués. L'intégration optimale des sections d'accélération et de transport sera alors à déterminer. On cherchera à chaque étape à mettre en évidence les principes fondamentaux permettant d'obtenir les paramètres faisceau optimum, puis à les appliquer aux autres projets de conception d’ALP dans lesquels le DACM est impliqué. Des optimisations à l’aide d’algorithme d’apprentissage machine sont également envisagées.
Le succès de ces études est fortement conditionné par une solide compréhension des phénomènes physiques en jeu (espace de phase 6D du faisceau, champ de sillage dans les plasmas soumis à des lasers ultra-intenses, champ multipolaire des électroaimants) et par une bonne utilisation des codes de simulation appropriés.