27 Résultat(s)

Atlas est l'un des détecteurs installés auprès du LHC, le collisionneur à protons du Cern dédié à l'étude du Boson de Higgs et à la recherche de nouvelle physique au delà du modele standard, qui est entré en fonction en 2008. Objectifs : Unification des constituants de la matière et de leurs interactions. Atlas est l'un des deux détecteurs généralistes installés auprès du LHC, qui est entré en fonction au Cern en 2008. Atlas se propose d’explorer un nouveau domaine de la physique expérimentale.
Le projet CHyMENE (Cible d'Hydrogène Mince pour l'Etude des Noyaux Exotiques) s’inscrit dans le cadre de l'instrumentation nécessaire à l'exploitation des faisceaux de basse énergie incidente (5 à ~25 MeV/n), comme SPIRAL2. Il s’agit de développer une cible cryogénique d’hydrogène pur (H2 ou D2), dont les caractéristiques seront adaptées aux conditions des futures expériences de réactions directes. Porté par l’IRFU, - le DPhN et le DACM-, le projet associe trois laboratoires, l’IRFU, l'IPN Orsay et le SPN du CEA-DAM/DIF.
Expériences de Deeply Virtual Compton Scattering dans le Hall B de Jefferson Lab, avec le spectromètre à large acceptance CLAS12. Objectifs: De nouveaux concepts théoriques, les distributions de partons généralisées (GPD), permettent une approche bien plus riche de la structure du nucléon, et plus généralement du confinement des quarks dans les hadrons.
Objectif L’exploitation scientifique du LHC (Large Hadron Collider) qui sera mis en service au CERN à partir de l’été 2007, sera la priorité des prochaines années en physique des hautes énergies. La caractérisation fine de ses découvertes, et l’exploration exhaustive des phénomènes autour de l’échelle du TeV nécessiteront d’autres grands instruments, en particulier des collisionneurs électron positon.
CMS
CMS est l’un des détecteurs des 2 expériences généralistes et des 4 expériences (en plus d'Alice, Atlas et LHCb) installées auprès du LHC, le collisionneur à protons du Cern, à Genève. CMS est installé au point d'interaction No 5 à Cessy.   Objectifs: Durant les dernières décennies, la recherche fondamentale en physique des particules a fait d'énorme progrès et a permis de valider un cadre théorique appelé "Modèle Standard ».
Enjeux scientifiques et cadre du projet     Le projet COCOTIER (COrrélations à COurte porTée et spin IsotopiquE à R3B) vise à étudier les corrélations à courte portée dans les noyaux exotiques produits par fragmentation auprès de la machine d’ions radioactifs FAIR de GSI.
FRESCA2 est un aimant dipolaire de 1,5 m de long conçu pour fournir un champ central de 13 T à 4,2 K dans une ouverture de 100 mm avec une homogénéité de l’ordre du % sur 700 mm. La géométrie retenue est une configuration en blocs ; chaque pôle est constitué de 2 bobines « racetrack », formées chacune de deux couches de conducteur ayant les têtes inclinées pour dégager l’ouverture. Le conducteur est un câble en Nb3Sn de type Rutherford, constitué de 40 brins de 1 mm de diamètre. 14,6 T @ 1.
Objectif:  L’une des questions fondamentales de la physique actuelle concerne l’action de la gravité sur l’antimatière. D’un point de vue expérimental, aucune mesure directe n’a été réalisée sur des particules d’antimatière. Le CERN a donc lancé un programme auprès du Décélérateur d’Antiprotons (AD) qui permet d’envisager enfin une mesure de la gravité sur des atomes d’antihydrogène.
Objectif:  ILC est un collisionneur électron-positron destiné à l'exploration physique du secteur de Higgs et des interactions fondamentales au delà du modèle standard, utilisant des accélérateurs linéaires à cavités supraconductrices en niobium massif avec des champs accélérateurs de 35 MV/m ou plus. Il doit compléter l'activité du LHC, immense collisionneur proton-proton, situé à Genève.
L’Injecteur de protons à haute intensité, Iphi, est un prototype de la partie basse énergie des accélérateurs de future génération à fort courant de protons : 100 mA accélérés jusqu’à 3 MeV.
L’aimant Iseult de 11,75 T corps entier qui a été installé en 2017 est la pièce maîtresse d’un système d’imagerie par résonance magnétique (IRM) qui repoussera les limites de l'imagerie cérébrale. La réussite de ce projet franco-allemand passe par le développement de prototypes qui ont validé les points clés de ce projet ambitieux en dépassant les frontières technologiques actuelles.   Qu’est ce que le projet Iseult ? L’imagerie par résonance magnétique est un outil de diagnostic et de recherche pour les neurosciences.
 Objectif L'objectif du projet ITER (« chemin » en latin) vise à franchir les étapes de recherche encore nécessaires pour permettre la construction d’un prototype produisant de l’électricité à l’horizon 2050 à partir de la fusion nucléaire.
Le projet European-XFEL est une source de lumière dite de 4e génération qui produira des flash-laser extrêmement brillants (~ 1033 photons/s/mm2/mrad2) et ultra-courts (~10-100 fs) de rayons X jusqu’à 0,5 Å de longueur d’onde. Le but est de micro-photographier des structures et des processus physiques, chimiques ou biologiques afin d’en révéler la cinétique grâce à une exposition lumineuse jamais atteinte.
L'expérience COMPASS (Common Muon and Proton Aparatus for Structure and Spectroscopy) est une expérience de physique des particules se situant sur le faisceau du SPS au Cern, dans la banlieue de Genève. Elle comporte plusieurs thématiques de recherche: la structure du nucléon en termes de quarks et gluons, dans lequel le DPhN est plus particulièrement impliqué.
ESS est la future Source de Spallation Européenne en construction à Lund (Suède) qui démarrera en 2019 et sera pleinement opérationnelle en 2025. Elle délivrera des neutrons produits par spallation, réaction nucléaire résultant de l’irradiation d’une cible de tungstène par un faisceau de protons intense et de haute énergie lui-même produit par un accélérateur de particules linéaire et supraconducteur (Linac supra). La source ESS sera pulsée à 14 Hz avec un cycle utile de 4 % et une longueur de pulse de 2,86 ms.
Clic (Compact Linear Collider) est un projet de collisionneur linéaire d’électrons-positons pour la physique des très hautes énergies, et est un candidat potentiel pour succéder aux expériences du LHC. Le collisionneur Clic vise une énergie de collision de 0,38 à 3 TeV et une luminosité de 1 à 2,1034 cm-2s-1 sur une distance de 11 à 50 km. Il s’appuie sur un concept novateur « d’accélération à deux faisceaux » à la fréquence élevée de 12 GHz et un gradient accélérateur très élevé de 100 MV/m.
Enjeux scientifiques et cadre du projet Le projet MINOS vise à effectuer la spectroscopie de noyaux très exotiques  produits par fragmentation auprès de machines d’ions radioactifs de nouvelle génération telles que RIKEN ou GSI/FAIR. La structure des noyaux atomiques visés devraient nous permettre d’apporter des contraintes fortes sur l’interaction nucléaire entre les nucléons dans le noyau et apporter des informations essentielles quant à notre compréhension de l’origine et l’abondance de matière dans l’univers.
  Contexte et présentation   Le Laboratoire National des Champs Magnétiques Intenses (LNCMI à Grenoble) est le seul laboratoire en Europe à maîtriser le design et la fabrication de bobines résistives poly-hélices permettant d'atteindre des champs statiques de 35 teslas.   Dans l’objectif d’atteindre 43 teslas, le LNCMI mène le projet de réalisation d’un aimant hybride.
 Objectifs Production industrielle de quadripôles supraconducteurs double ouvertures à fort gradient (231T/m) pour l’accélérateur LHC du CERN. - Le but est d'atteindre une fiabilité de conception pour garantir dans le temps que tous les aimants fonctionneront avec seulement 15% de marge sur le courant maximal  Contexte Une expérience concurrente, SSC, a démarré début des années 1990 et a été stoppée en 1993  Localisation  Les quadripôles feront partie du LHC situé au Cern, en Suisse.  
 Etat de l’Art: LHC et le NbTi Jusqu’à présent, le matériau le plus utilisé dans la réalisation d’aimants supraconducteurs est l’alliage métallique ductile NbTi (production mondiale : entre 1500 et 2000 t/an; le LHC en utilise 1200 t). Les programmes de R&D menés pour le LHC ont permis de développer les aimants nécessaires à la machine mais ont aussi démontré que l’on était aux limites des performances du NbTi (9 à 10 T sur le conducteur).
R3B
  Objectifs: Etude de la structure nucléaire et des mécanismes des réactions nucléaires par reconstruction cinématique complète, avec des faisceaux exotiques et des faisceaux stables. L'expérience R3B se place dans le cadre du projet FAIR de GSI (Facility for Antiproton and Ion Research, http://www.gsi.de/fair).
Le futur accélérateur linéaire supraconducteur de Spiral2 fournira des faisceaux d’ions lourds stables avec des intensités extrêmement élevées. Ils pourront être employés pour produire des noyaux avec des sections efficaces de production très faibles, comme les noyaux superlourds ou des noyaux très déficients en neutrons. S3 a été conçu pour supporter ces très hautes intensités et sélectionner les noyaux d’intérêt parmi l’écrasante majorité des contaminants pour les identifier et les étudier.
 OBJECTIF ET PRESENTATION DE L'EXPERIENCE L'expérience Supra-Tech Chimie/Salle Blanche consiste à se doter des installations nécessaires aux traitements et conditionnement des nouvelles cavités supraconductrices liées à ces programmes.
Objectifs: Les cryomodules sont des éléments de systèmes radio-fréquence (RF) destinés à l’accélération de particules. Dans le cas de la machine Soleil, ils compensent la perte d’énergie des électrons lorsque ceux-ci émettent du rayonnement synchrotron dans l’anneau de stockage. Dans sa version finale, le système RF de Soleil (352 MHz) comprendra deux cryomodules contenant chacun une paire de cavités supraconductrices, immergées dans un bain d’hélium liquide à 4,5 K.
Présentation:  SPIRAL2 [SPIRAL: Système de Production d'Ions Radioactifs Accélérés en Ligne] est le nom du dispositif qui produira de nouveaux faisceaux d’ions stables ou radioactifs au GANIL (Grand Accélérateur National d'Ions Lourds).
Généralités Thématique et contexte du projet L’utilisation de cavités supraconductrices pour accélérer des faisceaux de particules apporte de nombreux avantages, notamment en terme de rendement, et de compacité des structures pour les cycles utiles élevés.
T2K
L’expérience T2K (Tokai to Kamioka)  est actuellement leader mondiale pour l’étude des oscillations de neutrinos sur une longue distance à partir de faisceaux de neutrinos et d’anti-neutrinos muoniques. Les neutrinos se déclinent en trois types différents (appelés 'saveurs') : νe, νμ ou ντ. Durant les quinze à vingt dernières années, plusieurs expériences ont prouvé que les neutrinos sont soumis à un phénomène quantique dit « d’oscillation » d’un type à l’autre.

 

Retour en haut