Une équipe de théoriciens du Département d’Astrophysique (DAP) du CEA, travaillant au sein du Laboratoire de Modélisation des Plasmas Astrophysiques (LMPA), a réalisé des simulations à l’aide des supercalculateurs du CEA, dans le but de comprendre la formation des étoiles et des disques protoplanétaires. Des mois de calcul ont permis d’atteindre des résolutions jamais atteintes auparavant, révélant de nouveaux détails sur la formation de ces objets.
Ces simulations apportent deux résultats majeurs : les protoétoiles sont turbulentes dès leur naissance et les disques protoplanétaires se forment à partir de matériel éjecté par la surface de l’étoile.
Ces résultats ont été publiés dans le journal Astronomy & Astrophysics : The birth and early evolution of a low-mass protostar et Formation of low-mass protostars and their circumstellar disks.
Les magnétars sont des étoiles à neutrons arborant les champs magnétiques les plus intenses observés dans l’Univers. Pour s’atteler à la question encore ouverte de l’origine de ces champs magnétiques extrêmes, un scénario a été proposé par une équipe du Département d’Astrophysique (DAp) du CEA Saclay faisant appel au mécanisme dynamo de Tayler-Spruit, provoqué par la matière qui retombe sur la jeune étoile à neutrons après l’explosion en supernovae. L’équipe de scientifiques avait montré en 2022 par une analyse analytique que ce type de dynamo pouvait expliquer l’intensité du champ magnétique des magnétars. Dans cette nouvelle étude, l’équipe confirme ce résultat grâce à des simulations numériques tridimensionnelles. Cela aura de grandes répercussions sur la compréhension de l’origine des champs magnétiques, non seulement pour les magnétars, mais aussi pour l’évolution stellaire où le même mécanisme dynamo pourrait être à l’œuvre.
Cette nouvelle étude a été publié dans le journal Monthly Notices of the Royal Astronomical Society: Letters.
Ce projet WHOLESUN vient d’être financé pour une durée de six années par une prestigieuse bourse Synergy du Conseil européen de la recherche (ERC). Cinq experts Européens du Soleil et des étoiles, issus du département d’Astrophysique du CEA-Irfu / UMR AIM, du Max Planck Institute for Solar System Research (MPS) en Allemagne, de l'Université de St Andrews au Royaume-Uni, de l'Université d'Oslo en Norvège et de l'Institut d'Astrophysique des Canaries (IAC), vont mettre en commun leurs savoir-faire et connaissances de la dynamique de notre étoile et de ses jumeaux. L’objectif est de déterminer au cours des six prochaines années comment le champ magnétique est généré à l'intérieur du Soleil et comment il crée des tâches solaires à sa surface et des éruptions dans son atmosphère hautement stratifiée. À cette fin, l'équipe développera le modèle du Soleil complet le plus avancé à l'aide des super ordinateurs les plus puissants, dits Exa-scale et le contraindra avec les observations venant de missions spatiales, tel que Solar Orbiter de l’Agence Spatiale Européenne (ESA) qui sera lancé en 2020.